Skip to main content
Log in

Strong Magnetic Field Effects on the Collision Term and Electron-Ion Temperature Relaxation

  • Review Article
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Under conditions when the particles’ thermal gyro-radii are smaller than the Debye length \(\lambda _D\), the magnetic field influence on the collision dynamics and associated transport processes becomes significant and has to be considered. In this paper, derivation of the kinetic equation based on the Fokker–Planck approach is reviewed for uniform magnetized plasmas with \(\rho _{the}<\lambda _D<\rho _{thi}\), where \(\rho _{the}\) and \(\rho _{thi}\) are the electron and ion thermal gyro-radii, respectively. Generally speaking, current tokamak plasmas lie in the above studied parameter range. Serving as an example for the application of the derived magnetized kinetic equation and demonstrating the modifications to the transport coefficients from a strong magnetic field, the electron-ion temperature relaxation is reviewed. The relaxation time exhibits a noticeable magnetic field dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Rostoker, M.N. Rosenbluth, Test particles in a completely ionized plasma. Phys. Fluids 3, 1–14 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. N. Rostoker, Kinetic equation with a constant magnetic field. Phys. Fluids 3, 922–927 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M.H.A. Hassan, C.J.H. Watson, Magnetized plasma kinetic theory. I. Derivation of the kinetic equation for a uniform magnetized plasma. Plasma Phys. 19, 237–247 (1977)

    Article  ADS  Google Scholar 

  4. A.H. Øien, Anomalous temperature relaxation and particle transport in a strongly non-uniform, fully ionized plasma in a strong magnetic field. J. Plasma Phys. 53, 31–48 (1995)

    Article  ADS  Google Scholar 

  5. Y.L. Klimontovich, Kinetic Theory of Nonideal Gases and Nonideal Plasmas (Pergamon Press, New York, 1982), pp. 189–198

    Google Scholar 

  6. P.H. Yoon, Collisional relaxation of bi-Maxwellian plasma temperatures in magnetized plasmas. Phys. Plasmas 23, 072114 (2016)

    Article  ADS  Google Scholar 

  7. A.G. Peeters, D. Strintzi, The Fokker–Planck equation, and its application in plasma physics. Ann. Phys. 17, 142–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.N. Rosenbluth, W.M. MacDonald, D.L. Judd, Fokker–Planck equation for an inverse-square force. Phys. Rev. 107, 1–6 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J. Hubbard, The friction and diffusion coefficients of the Fokker–Planck equation in a plasma. Proc. R. Soc. London Ser. A 260, 114–126 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J. Hubbard, The friction and diffusion coefficients of the Fokker–Planck equation in a plasma II. Proc. R. Soc. London Ser. A 261, 371–387 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A.G. Sitenko, C. Yu-mai, Coefficients of dynamical friction and diffusion in a plasma. Sov. Phys.-Tech. Phys. 7, 978–984 (1963)

    MathSciNet  Google Scholar 

  12. S. Ichimaru, M.N. Rosenbluth, Relaxation processes in plasmas with magnetic field. Temperature relaxations. Phys. Fluids 13, 2778–2789 (1970)

    Article  ADS  MATH  Google Scholar 

  13. T.B. Kaiser, Comments on “Relaxation processes in plasmas with magnetic field”. Phys. Fluids 22, 593–594 (1979)

    Article  ADS  Google Scholar 

  14. K. Matsuda, Fokker–Planck equation for a plasma in a magnetic field with electrostatic fluctuations. Phys. Fluids 26, 1508–1515 (1983)

    Article  ADS  MATH  Google Scholar 

  15. A.A. Ware, Electron Fokker–Planck equation for collisions with ions in a magnetized plasma. Phys. Rev. Lett. 62, 51–54 (1989)

    Article  ADS  Google Scholar 

  16. C.E. Newman, A generalization of the equations governing the evolution of a particle distribution in a random force field. J. Math. Phys. 14, 502–508 (1973)

    Article  ADS  MATH  Google Scholar 

  17. C. Dong, W. Zhang, D. Li, Fokker–Planck equation in the presence of a uniform magnetic field. Phys. Plasmas 23, 082105 (2016)

    Article  ADS  Google Scholar 

  18. C. Dong, D. Li, C. Jiang, Electron-electron collision term describing the reflections induced scattering in a magnetized plasma. Chin. Phys. Lett. 36, 075201 (2019)

    Article  ADS  Google Scholar 

  19. C. Dong, W. Zhang, J. Cao, D. Li, Derivation of the magnetized Balescu-Lenard-Guernsey collision term based on the Fokker–Planck approach. Phys. Plasmas 24, 122120 (2017)

    Article  ADS  Google Scholar 

  20. Y.M. Aliev, V.P. Silin, Rate of equalization of “longitudinal” and “transverse” plasma temperatures. Nucl. Fusion 3, 248–250 (1963)

    Article  Google Scholar 

  21. D. Montgomery, G. Joyce, L. Turner, Magnetic field dependence of plasma relaxation times. Phys. Fluids 17, 2201–2204 (1974)

    Article  ADS  Google Scholar 

  22. C. Dong, H. Ren, H. Cai, D. Li, Effects of magnetic field on anisotropic temperature relaxation. Phys. Plasmas 20, 032512 (2013)

    Article  ADS  Google Scholar 

  23. V.P. Silin, On relaxation of electron and ion temperatures of fully ionized plasma in a strong magnetic field. Sov. Phys. JETP 16, 1281–1285 (1963)

    ADS  MathSciNet  Google Scholar 

  24. P. Ghendrih, A. Samain, J.H. Misguich, Magnetic field dependence of the energy-equipartition frequency and the resistivity. Phys. Lett. A 119, 354–358 (1987)

    Article  ADS  Google Scholar 

  25. C. Dong, H. Ren, H. Cai, D. Li, Temperature relaxation in a magnetized plasma. Phys. Plasmas 20, 102518 (2013)

    Article  ADS  Google Scholar 

  26. Y.M. Aliev, A.R. Shister, Transport phenomena in a plasma in a strong magnetic field. Sov. Phys. JETP 18, 1035–1040 (1964)

    MathSciNet  Google Scholar 

  27. S. Ichimaru, T. Tange, Theory of classical and anomalous diffusion of a plasma across a magnetic field. J. Phys. Soc. Jpn. 36, 603–609 (1974)

    Article  ADS  Google Scholar 

  28. A.H. Sørensen, E. Bonderup, Electron cooling. Nucl. Instrum. Methods Phys. Res. 215, 27–54 (1983)

    Article  ADS  Google Scholar 

  29. H.B. Nersisyan, C. Toepffer, G. Zwicknagel, Interactions Between Charged Particles in a Magnetic Field: A Theoretical Approach to Ion Stopping in Magnetized Plasmas (Springer, Heidelberg, 2007)

    Google Scholar 

  30. L.I. Men’shikov, New directions in the theory of electron cooling. Phys. Usp. 51, 645–680 (2008)

    Article  ADS  Google Scholar 

  31. H.B. Nersisyan, G. Zwicknagel, Cooling force on ions in a magnetized electron plasma. Phys. Rev. ST Accel. Beams 16, 074201 (2013)

    Article  ADS  Google Scholar 

  32. E.S. Evans, S.A. Cohen, D.R. Welch, Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma. Phys. Plasmas 25, 042105 (2018)

    Article  ADS  Google Scholar 

  33. S. Cohen, E. Sarid, M. Gedalin, Collisional relaxation of a strongly magnetized ion-electron plasma. Phys. Plasmas 26, 082105 (2019)

    Article  ADS  Google Scholar 

  34. K. Matsuda, Anomalous magnetic field effects on electron-ion collisions. Phys. Rev. Lett. 49, 1486–1488 (1982)

    Article  ADS  Google Scholar 

  35. M. Psimopoulos, D. Li, Cross field thermal transport in highly magnetized plasmas. Proc. R. Soc. London Ser. A 437, 55–65 (1992)

    Article  ADS  MATH  Google Scholar 

  36. D.H.E. Dubin, T.M. O’Neil, Cross-magnetic-field heat conduction in non-neutral plasmas. Phys. Rev. Lett. 78, 3868–3871 (1997)

    Article  ADS  Google Scholar 

  37. S. Chandrasekhar, Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. The closest distance \(L_c\) between the two colliding particles is identical to the usual impact parameter when the particles’ actual relative trajectory deviates slightly from its unperturbed one during the collision process. However, for the e-e collisions with reflections, the relative parallel velocity of the two electrons reverses during the collision and the relative motion changes notably compared to the unperturbed case. Under this condition, \(L_c\) and the impact parameter are not equivalent. Thus, \(L_c\) is used instead of the impact parameter to characterize the collision

  39. J.L. Hurt, P.T. Carpenter, C.L. Taylor, F. Robicheaux, Positron and electron collisions with anti-protons in strong magnetic fields. J. Phys. B At. Mol. Opt. Phys. 41, 165206 (2008)

    Article  Google Scholar 

  40. H.B. Nersisyan, G. Zwicknagel, Binary collisions of charged particles in a magnetic field. Phys. Rev. E 79, 066405 (2009)

    Article  ADS  Google Scholar 

  41. D.H.E. Dubin, Parallel velocity diffusion and slowing-down rate from long-range collisions in a magnetized plasma. Phys. Plasmas 21, 052108 (2014)

    Article  ADS  Google Scholar 

  42. H.B. Nersisyan, G. Zwicknagel, C. Toepffer, Energy loss of ions in a magnetized plasma: Conformity between linear response and binary collision treatments. Phys. Rev. E 67, 026411 (2003)

    Article  ADS  Google Scholar 

  43. M. Greenwald, A. Bader, S. Baek, M. Bakhtiari, H. Barnard, W. Beck, W. Bergerson, I. Bespamyatnov, P. Bonoli, D. Brower et al., 20 years of research on the Alcator C-Mod tokamak. Phys. Plasmas 21, 110501 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National MCF Energy R&D Program under Grant No. 2018YFE0311300, the National Natural Science Foundation of China under Grant Nos. 11875067, 11835016, 11705275, 11675257, and 11675256, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDB16010300, the Key Research Program of Frontier Science of Chinese Academy of Sciences under Grant No. QYZDJ-SSW-SYS016, and the External Cooperation Program of Chinese Academy of Sciences under Grant No. 112111KYSB20160039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Li, D. Strong Magnetic Field Effects on the Collision Term and Electron-Ion Temperature Relaxation. J Fusion Energ 39, 390–400 (2020). https://doi.org/10.1007/s10894-020-00280-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-020-00280-3

Keywords

Navigation