Skip to main content
Log in

Study on the Intensification of the Boron-Rich Slag Subsection Cooling Process

  • Characterization of Additive Manufactured Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A subsection cooling process is used to selectively precipitate suanite from boron-rich slag, which initially requires a relatively high cooling rate followed by a low cooling rate. The cooling rate and homogeneity affect the crystal growth of the precipitated phase. Different structure intensification approaches, including adding cold slag and applying fins, are effective for improving the reaction. In this work, a numerical simulation of the subsection cooling process was carried out. The temperature distribution and cooling rate distribution were studied. Fast cooling under the conditions of adding cold slag and applying fins yielded centralized cooling rates of 6.3 °C min−1 and 5.3 °C min−1, respectively, with standard deviations of 27.5 and 19.7 °C min−1; the corresponding values of the traditional cooling process are 2.6 °C min−1 and 20.4 °C min−1, respectively. The results show that cold slag is better for increasing the cooling rate than fin slag, but using fins ensures that the cooling process is more homogeneous. Considering the combined effects of different arrangements, applying fins is determined to be the better choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.X. Zhang, Z.T. Sui, P.X. Zhang, Z.T. Sui, Metall. Mater. Trans. B 26B, 345. (1995).

    Article  Google Scholar 

  2. X.H. Wang, L.Q. Zhang, M.Y. Hou, T. Wang, H.F. Zhou, X.H. Wang, L.Q. Zhang, M.Y. Hou, T. Wang, H.F. Zhou, China J. Process Eng. 7(4), 72. (2007).

    Google Scholar 

  3. J.F. Lang, X.P. Zhang, S.L. Liu, J.F. Lang, X.P. Zhang, S.L. Liu, J Northeast. Univ. (Natural Science) 14(1), 32. (1993).

    Google Scholar 

  4. H.R. Zhan, Z.G. Fan, X.F. Jiang, J. Li, T. Jiang, H.R. Zhan, Z.G. Fan, X.F. Jiang, J. Li, T. Jiang, J. Jiangsu Univ. 32(1), 47. (2011).

    Google Scholar 

  5. T.A. Zhang, Y.L. Wang, H. Yang, C.X. Chen, X.P. Zhang, J.C. He, J.H. Shao, Y.Q. Cui, T.A. Zhang, Y.L. Wang, H. Yang, C.X. Chen, X.P. Zhang, J.C. He, J.H. Shao, Y.Q. Cui, J. Northeast. Univ. (Natural Science) 19(S1), 258. (1998).

    Google Scholar 

  6. Y. Li, Y. Du, J. Gao, Z. Guo, Y. Li, Y. Du, J. Gao, Z. Guo, Miner. Eng. 155, 1. (2020).

    Article  Google Scholar 

  7. Y. Li, Y. Li, J. Gao, Z. Huang, Z. Guo. Ceramics Int. 45, 10961. (2019).

    Article  Google Scholar 

  8. M. Hayashi, H. Ishii, M. Susa, M. Hayashi, H. Ishii, M. Susa,, F. Hiroyuki, K. Nagata. Phys. Chem. Glasses 42, 6. (2001).

    Google Scholar 

  9. J.H. Park, J.H. Park, D.J. Min, H.S. Song. Metall. Mater. Trans. B 35B(2), 269. (2004).

    Article  Google Scholar 

  10. Y. Kang, and K. Morita, Y. Kang, and K. Morita, ISIJ INT 19, 61. (2006).

    Article  Google Scholar 

  11. H.R. Zhan, Z.G. Fan, S.J. Zhou, and S.L. Liu, H.R. Zhan, Z.G. Fan, S.J. Zhou, and S.L. Liu, Mining Metall. 17(6), 34. (2008).

    Google Scholar 

  12. H.R. Zhan, S.L. Liu, and Z.G. Fan, H.R. Zhan, S.L. Liu, and Z.G. Fan, J. Northeast. Univ. (Natural Science) 11, 1604. (2007).

    Google Scholar 

  13. H.J. Hu, D.F. Zhang, and M.B. Yang, H.J. Hu, D.F. Zhang, and M.B. Yang, JMP 10(2), 82. (2008).

    Google Scholar 

  14. W.Q. Tao. Numerical Heat Transfer, 2nd ed. (Xi’an: Xi’an Jiao Tong University Press, 2001), pp. 86.

  15. H.R. Zhan, J. Li, C.F. Gao, T. Jiang, and Z.G. Fan, H.R. Zhan, J. Li, C.F. Gao, T. Jiang, and Z.G. Fan, J. Chinese Rare Earth Soc. 28, 267. (2010).

    Google Scholar 

  16. M. Nitta, H. Nakamura, A. Ishii, Report No. 94, Nippon Steel Technical Report, Tokyo, Japan, July 2008.

  17. F. Moukalled, L. Mangani and M. Darwish: The Finite Volume Method in Computational Fluid Dynamics (Stuttgart: Springer, 2015), pp. 103-135.

  18. T.N. Tan, M. Dou. Chemical engineering principle, 4th ed. (Beijing: Chemical Industry Press), pp. 176.

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (NSFC) (Grant No. 51204040); Fundamental Research Funds for the Central Universities (Grant Nos. N180725023, N2024005-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyue Zhao.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Zhao, Q., Li, X. et al. Study on the Intensification of the Boron-Rich Slag Subsection Cooling Process. JOM 73, 781–790 (2021). https://doi.org/10.1007/s11837-020-04546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04546-1

Navigation