Skip to main content
Log in

Phytosynthesis of poly (ethylene glycol) methacrylate-hybridized gold nanoparticles from C. tuberculata: their structural characterization and potential for in vitro growth in banana

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Here, we are analyzing the comparative study of green-synthesized biogenic Caralluma tuberculata gold nanoparticles (Ca-AuNPs) and poly (ethylene glycol) methacrylate coated Ca-AuNPs nanocomposites (PEGMA-AuNPs), formed by hybridization of Ca-AuNPs with PEGMA. Both the virgin and polymer-capped materials (polymer hybrid) were physico-chemically characterized, using Fourier transform infrared spectroscopy (FTIR) that revealed physical interactions during coating without new peak, as PEGMA did not disturb the crystal structure of the AuNPs. However, a red shift of AuNPs from 450 to 520 nm was observed and the overall particle size of AuNPs was increased after PEGMA coating (50 to 100 nm). Furthermore, an efficient protocol of biomass enhancement of in vitro micropropagated Musa acuminate was achieved upon supplementation with Ca-AuNPs and PEGMA-Ca-AuNPs, in the Murashige and Skoog (MS) media in a dose-dependent manner. The maximum fresh, dry weight, and shoot length were achieved upon 80 ppm PEGMA-Ca-AuNPs supplementation. In the physiological analysis, higher chlorophyll content, abundant soluble sugar, and elevated moisture content also appeared upon 80 ppm PEGMA-AuNPs addition. Phytohormone analysis showed over-accumulation of IAA content, while on contrary, decreased MDA and H2O2 content, higher production of phenolics, flavonoids, phenylalanine ammonia lyase activity, and antioxidant activity was noticeable upon 80 ppm PEGMA-AuNPs supplementation. Moreover, enhanced antioxidant enzyme activities including CAT, SOD, POD, and APx were detected at 80 ppm PEGMA-Ca-AuNPs supplementation in MS media. It can be concluded that the PEGMA-AuNPs elicitation can be effectively used in plant tissue culture and agricultural industry, for sustainable promotion of biomass and secondary metabolic through modulating the physiological, biochemical, and bioactive antioxidants status and modifying cell wall properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Abeles FB, Biles CL (1991) Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiol 1:269–273

    Article  Google Scholar 

  • Agbo PE, Nwofe PA, Ahworehe EU (2017) Morphological and optical properties of polymer capped zno nanoparticles. DIG J Nanomater Bios 12:653–658

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A (2011) Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res, Int

    Google Scholar 

  • Ali SI (2008) Significance of flora with special reference to Pakistan. Pak J Bot 3:967–971

    Google Scholar 

  • Amin M, Anwar F, Janjua MR, Iqbal MA, Rashid U (2012) Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int J Mol 8:9923–9941

    Article  CAS  Google Scholar 

  • Arab MM, Yadollahi A, Hosseini-Mazinani M, Bagheri S (2014) Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G× N15 (hybrid of almond× peach) rootstock. Genet Eng Biotech N 2:103–110

    Article  Google Scholar 

  • Arrigoni O, De Gara L, Tommasi F, Liso R (1992) Changes in the ascorbate system during seed development of Vicia faba L. Plant Physiol 1:235–238

    Article  Google Scholar 

  • Alqadi M, Noqtah OA, Alzoubi F, Alzouby J, Aljarrah K (2014) pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Materials Science-Poland 1:107–111

    Article  CAS  Google Scholar 

  • Baruah D, Goswami M, Yadav RN, Yadav A, Das AM (2018) Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes. J Photoch Photobio. B 1:51–58

    Article  CAS  Google Scholar 

  • Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Ana 10:178–182

    CAS  Google Scholar 

  • Chen H, Li Z, Xiong L (2012) A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett 12:1742–1747

    Article  CAS  Google Scholar 

  • Dave V, Yadav RB, Kushwaha K, Yadav S, Sharma S, Agrawal U (2017) Lipid-polymer hybrid nanoparticles: development & statistical optimization of norfloxacin for topical drug delivery system. Bioact. Mater 4:269–280

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 3:350–356

    Article  Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali M (2016) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol 6:1076–1092

    Article  CAS  Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali M, Shujait Ali S, Khan A, Wei DQ (2019) Sustainable production of biomass and industrially important secondary metabolites in cell cultures of selfheal (Prunella vulgaris L.) elicited by silver and gold nanoparticles. Artif Cell Nanomed B 1:2553–2561

    Article  CAS  Google Scholar 

  • Feng XM, Qiao Y, Mao K, Hao YJ (2010a) Ectopic overexpression of AtmiR398b gene in tobacco influences seed germination and seedling growth. Plant Cell Tiss Org 1:53–59

    Article  CAS  Google Scholar 

  • Feng XM, Qiao Y, Mao K, Hao YJ, You CX (2010b) Overexpression of Arabidopsis AtmiR408 gene in tobacco. Acta Biol Cracov 2:26–31

    Google Scholar 

  • Giannopolitis GN, Ries SK (1977) Superoxide Dismutases. Plant Physiology 59(2):309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo HS, Xie Q, Fei JF (2005) Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. The Plant Cell 17:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res 2:255–264

    Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 10:2638–2650

    Article  CAS  Google Scholar 

  • Jadczak P, Kulpa D, Bihun M, Przewodowski W (2019) Positive effect of AgNPs and AuNPs in in vitro cultures of Lavandula angustifolia Mill. Plant Cell Tiss Org 139:191–197

    Article  CAS  Google Scholar 

  • Jain A, Sinilal B, Starnes DL, Sanagala R, Krishnamurthy S, Sahi SV (2014) Role of Fe-responsive genes in bioreduction and transport of ionic gold to roots of Arabidopsis thaliana during synthesis of gold nanoparticles. Plant Physiol Bioch 84:189–196

    Article  CAS  Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod 45:423–429

    Article  CAS  Google Scholar 

  • Joshi R, Singla-Pareek SL, Pareek A (2018) Engineering abiotic stress response in plants for biomass production. J Biol Chem 14:5035–5043

    Article  Google Scholar 

  • Kettner J, Dörffling K (1995) Biosynthesis and metabolism of abscisic acid in tomato leaves infected withBotrytis cinerea. Planta 4:627–634

    Article  Google Scholar 

  • Khan MA, Abbasi BH, Ahmed N, Ali H (2013) Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crops Prod 46:105–110

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 58:36492–36505

    Article  Google Scholar 

  • Kokina I, Gerbreders V, Sledevskis E, Bulanovs A (2013) Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J Biotechnol 2:127–132

    Article  CAS  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  PubMed  CAS  Google Scholar 

  • Kumari P, Panda PK, Jha E, Kumari K, Nisha K, Mallick MA, Verma SK (2017) Mechanistic insight to ROS and Apoptosis regulated cytotoxicity inferred by Green synthesized CuO nanoparticles from Calotropis gigantea to Embryonic Zebrafish. Sci Rep. https://doi.org/10.1038/s41598-017-16581-1

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 11:4158–4163

    Article  CAS  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 5:836–843

    Article  CAS  Google Scholar 

  • Liu Q, Chen YQ (2009) Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun 1:1–5

    Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 7:768–778

    Article  CAS  Google Scholar 

  • Markus J, Wang D, Kim YJ, Ahn S, Mathiyalagan R, Wang C, Yang DC (2017) Biosynthesis, characterization, and bioactivities evaluation of silver and gold nanoparticles mediated by the roots of Chinese herbal Angelica Pubescens Maxim. Nanoscale Res Lett 1:46

    Article  CAS  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2:346–356

    Article  CAS  Google Scholar 

  • Miyake C, Shinzaki Y, Nishioka M, Horiguchi S, Tomizawa KI (2006) Photoinactivation of ascorbate peroxidase in isolated tobacco chloroplasts: Galdieria partita APX maintains the electron flux through the water–water cycle in transplastomic tobacco plants. Plant Cell Physiol 2:200–210

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–487

    Article  CAS  Google Scholar 

  • Nair PR (2019) Delivering combination chemotherapies and targeting oncogenic pathways via polymeric drug delivery systems. Polymers 4:630

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Naz SS, Islam NU, Shah MR, Alam SS, Iqbal Z, Bertino M, Franzel L, Ahmed A (2013) Enhanced biocidal activity of Au nanoparticles synthesized in one pot using 2, 4-dihydroxybenzene carbodithioic acid as a reducing and stabilizing agent. J. Nanobiotechnology 11:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Nanocrystals Angew 25:4630–4660

    Google Scholar 

  • Permadi A, Fahmi MZ, Chen JK, Chang JY, Cheng CY, Wang GQ, Ou KL (2012) Preparation of poly (ethylene glycol) methacrylate coated CuInS 2/ZnS quantum dots and their use in cell staining. RSC Adv 14:6018–6022

    Article  CAS  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25

    Article  CAS  PubMed  Google Scholar 

  • Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:8

    Article  CAS  Google Scholar 

  • Rahme K, Chen L, Hobbs RG, Morris MA, O'Driscoll C, Holmes JD (2013) PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions. RSC Adv 17:6085–6094

    Article  Google Scholar 

  • Rashmi R, Trivedi MP (2014) Assessment of variations in different cultivars of Catharanthus roseus by using restriction endonuclease and rapid PCR. Int J Pure Appl Biosci 2:336–242

    Google Scholar 

  • Rauf M, Arif M, Dortay H, Matallana-Ramírez LP, Waters MT, Nam HG, Lim PO, Mueller-Roeber B, Balazadeh S (2013a) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Rep 4:382–388

    Article  CAS  Google Scholar 

  • Rauf M, Arif M, Fisahn J, Xue GP, Balazadeh S, Mueller-Roeber B (2013b) NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis. The Plant Cell 12:4941–4955

    Article  CAS  Google Scholar 

  • Safari J, Enayati Najafabadi A, Zarnegar Z, Farkhonde Masoule S (2016) Catalytic performance in 4-nitrophenol reduction by Ag nanoparticles stabilized on biodegradable amphiphilic copolymers. Green Chem Lett Rev 1:20–26

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotech 167:2225–2233

    Article  CAS  Google Scholar 

  • Shukla D, Krishnamurthy S, Sahi SV (2014) Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl−4) treatment. Front Plant Sci 5:652

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon C, Langlois-Meurinne M, Bellvert F, Garmier M, Didierlaurent L, Massoud K, Chaouch S, Marie A, Bodo B, Kauffmann S, Noctor G (2010) The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst. J Exp Bot 61:3355–3370

    Article  CAS  PubMed  Google Scholar 

  • Thorpe TA (2007) History of plant tissue culture. Mol Biotechnol 37:169–180

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Loreto F (2005) On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ 3:318–327

    Article  Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 10:4113–4117

    Article  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 7:570–577

    Article  CAS  Google Scholar 

  • Wesołowska A, Jadczak P, Kulpa D, Przewodowski W (2019) Gas chromatography-mass spectrometry (GC-MS) analysis of essential oils from AgNPs and AuNPs elicited Lavandula angustifolia in vitro cultures. Molecules 24:606

    Article  PubMed Central  CAS  Google Scholar 

Download references

Funding

The study was supported by the university’s sources.

Author information

Authors and Affiliations

Authors

Contributions

Natasha Anwar, Abbas Khan, Mohib Shah: NPs synthesis, physico-chemical characterization; Syed Adil Shah, Fazle Subhan: supervision, characterization, result interpretation; Jan Wahid, Jalal Uddin: methodology, data collection; Muhammad Arif, Mamoona Rauf: supervision, writing-original draft, project design; Mubarak Ali Khan, Kazim Ali: critical revision, intellectual suggestions, data interpretation

Corresponding authors

Correspondence to Mamoona Rauf or Muhammad Arif.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Editor: Yong Eui Choi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, N., Wahid, J., Uddin, J. et al. Phytosynthesis of poly (ethylene glycol) methacrylate-hybridized gold nanoparticles from C. tuberculata: their structural characterization and potential for in vitro growth in banana. In Vitro Cell.Dev.Biol.-Plant 57, 248–260 (2021). https://doi.org/10.1007/s11627-020-10150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-020-10150-4

Keywords

Navigation