Skip to main content
Log in

Molecular characterization of stress tolerance genes associated with D. indicus strain under extreme environment conditions

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Deinococcus indicus is a novel bacteria isolated from West Bengal, India known for its UV radiation and heavy metal tolerance. Since, this organism is reported from a region known for heavy metal contamination and earlier investigations demonstrated its radiation resistance, our study focused on the multiple stress responsive and DNA repair mechanisms. Though, most of the members of the genus Deinococcus are Gram positive cocci, D. indicus postures Gram negative rod shaped cells. Hence, the objectives were framed precisely to understand DNA repair pathway and stress responsive genes expression with a broader perspective. Based on available whole genome sequence of D. indicus, quantitative real time PCR (qPCR) was done to determine the expression pattern of multiple stress responsive genes upon various environmental extremities. Among them, UV responsive genes like UvrD and UvsE showed elevated expression when subjected to UV-C radiation at different time intervals. Similarly, when supplemented with arsenic and chromium, ArsR and ArsB exhibited considerably higher level of expression. While all the genes were subsequently analyzed in-silico, depicted that most of them were with N-glycosylation site, GPI anchor sites, N-terminal trans-membrane helix region besides putative signal peptides. Overall, this study opined the functional information on stress tolerance genes that aid to understand the DNA damage recovery mechanism towards elucidation of DNA repair pathways.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alidadi, H., Sany, S. B. T., Oftadeh, B. Z. G., Mohamad, T., Shamszade, H., & Fakhari, M. (2019). Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. Environmental Health and Preventive Medicine, 24(1), 59.

    Article  Google Scholar 

  • Bentchikou, E., Servant, P., Coste, G., & Sommer, S. (2010). A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcusradiodurans. PLoS Genetics, 6(1), e1000774.

    Article  Google Scholar 

  • Bernstein, K. A., Gangloff, S., & Rothstein, R. (2010). The RecQ DNA helicases in DNA repair. Annual Review of Genetics, 44, 393–417.

    Article  CAS  Google Scholar 

  • Bowman, S. M., Piwowar, A., Vierula, J., & Free, S. J. (2006). Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurosporacrassa. Eukaryotic Cell, 5(3), 587–600.

    Article  CAS  Google Scholar 

  • Chauhan, D., Srivastava, P. A., Yennamalli, R. M., & Priyadarshini, R. (2017). Draft genome sequence of Deinococcus indicus DR1, a novel strain isolated from a freshwater wetland. Genome Announcements, 5(31), e00754-17.

    Article  Google Scholar 

  • Chen, A., Contreras, L. M., & Keitz, B. K. (2017). Imposed environmental stresses facilitate cell-free nanoparticle formation by Deinococcusradiodurans. Applied and Environment Microbiology, 83(18), e00798-e817.

    CAS  Google Scholar 

  • Craney, A., & Romesberg, F. E. (2017). Stable Signal Peptides and the Response to Secretion Stress in Staphylococcus aureus. MBio, 8(6), e01507-e1517.

    Article  CAS  Google Scholar 

  • Das, D., Tripsianes, K., Jaspers, N. G., Hoeijmakers, J. H., Kaptein, R., Boelens, R., & Folkers, G. E. (2008). The HhH domain of the human DNA repair protein XPF forms stable homodimers. Proteins: Structure, Function, and Bioinformatics, 70(4), 1551–1563.

    Article  CAS  Google Scholar 

  • Dugo, M. A., Han, F., & Tchounwou, P. B. (2012). Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation. Reviews on Environmental Health, 27(2–3), 103–116.

    CAS  Google Scholar 

  • Earl, A. M., Rankin, S. K., Kim, K. P., Lamendola, O. N., & Battista, J. R. (2002). Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. Journal of Bacteriology, 184(4), 1003–1009.

    Article  CAS  Google Scholar 

  • Gamboa-Loira, B., Cebrian, M. E., Franco-Marina, F., & Lopez-Carrillo, L. (2017). Arsenic metabolism and cancer risk: a meta-analysis. Environmental research, 156, 551–558.

    Article  CAS  Google Scholar 

  • Gršković, B., Zrnec, D., Popović, M., Petek, M. J., Primorac, D., & Mršić, G. (2013). Effect of ultraviolet C radiation on biological samples. Croatian Medical Journal, 54(3), 263–271.

    Article  Google Scholar 

  • Iost, I., Bizebard, T., & Dreyfus, M. (2013). Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1829(8), 866–877.

    Article  CAS  Google Scholar 

  • Iost, I., & Dreyfus, M. (2006). DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Research, 34(15), 4189–4197.

    Article  CAS  Google Scholar 

  • Kang, J., & Blaser, M. J. (2006). UvrD helicase suppresses recombination and DNA damage-induced deletions. Journal of Bacteriology, 188(15), 5450–5459.

    Article  CAS  Google Scholar 

  • Keller, K. L., Overbeck-Carrick, T. L., & Beck, D. J. (2001). Survival and induction of SOS in Escherichia coli treated with cisplatin, UV-irradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination. Mutation Research/DNA Repair, 486(1), 21–29.

    Article  CAS  Google Scholar 

  • Kim, T. H., Seo, J. W., Hong, Y. S., & Song, K. H. (2017). Case–control study of chronic low-level exposure of inorganic arsenic species and non-melanoma skin cancer. The Journal of Dermatology, 44(12), 1374–1379.

    Article  CAS  Google Scholar 

  • Kulkarni, R. R., Shaiwale, N. S., Deobagkar, D. N., & Deobagkar, D. D. (2015). Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcusradiodurans, their characterization, and determination of bioactivity. International Journal of Nanomedicine, 10, 963.

    Google Scholar 

  • Manning, A. J., & Kuehn, M. J. (2013). Functional advantages conferred by extracellular prokaryotic membrane vesicles. Journal of Molecular Microbiology and Biotechnology, 23(1–2), 131–141.

    Article  CAS  Google Scholar 

  • Martin, K. L., & Smith, T. K. (2006). The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosomabrucei is dependent on the de novo synthesis of inositol. Molecular Microbiology, 61(1), 89–105.

    Article  CAS  Google Scholar 

  • Mogk, A., Huber, D., & Bukau, B. (2011). Integrating protein homeostasis strategies in prokaryotes. Cold Spring Harbor Perspectives in Biology, 3(4), a004366.

    Article  Google Scholar 

  • Mohania, D., Chandel, S., Kumar, P., Verma, V., Digvijay, K., Tripathi, D., et al. (2017). Ultraviolet radiations: Skin defense-damage mechanism. Ultraviolet Light in Human Health, Diseases and Environment (pp. 71–87). Cham: Springer.

    Chapter  Google Scholar 

  • Nielsen, K. K., & Boye, M. (2005). Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions. Applied and Environmental Microbiology, 71(6), 2949–2954.

    Article  CAS  Google Scholar 

  • Paulino-Lima, I. G., Fujishima, K., Navarrete, J. U., Galante, D., Rodrigues, F., Azua-Bustos, A., & Rothschild, L. J. (2016). Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations. Journal of Photochemistry and Photobiology B: Biology, 163, 327–336.

    Article  CAS  Google Scholar 

  • Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157–184.

    Article  CAS  Google Scholar 

  • Roy, S. (2017). Impact of UV radiation on genome stability and human health. Ultraviolet Light in Human Health, Diseases and Environment (pp. 207–219). Cham: Springer.

    Chapter  Google Scholar 

  • Sher, S., & Rehman, A. (2019). Use of heavy metals resistant bacteria—a strategy for arsenic bioremediation. Applied Microbiology and Biotechnology, 103(15), 6007–6021.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullio, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa. Argentina. Applied Geochemistry, 17(3), 259–284.

    Article  CAS  Google Scholar 

  • Suresh, K., Reddy, G. S. N., Sengupta, S., & Shivaji, S. (2004). Deinococcusindicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. International Journal of Systematic and Evolutionary Microbiology, 54(2), 457–461.

    Article  CAS  Google Scholar 

  • Suvarapu, L. N., & Baek, S. O. (2017). Determination of heavy metals in the ambient atmosphere: A review. Toxicology and Industrial Health, 33(1), 79–96.

    Article  Google Scholar 

  • Walsh, N. P., Alba, B. M., Bose, B., Gross, C. A., & Sauer, R. T. (2003). OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell, 113(1), 61–71.

    Article  CAS  Google Scholar 

  • Wang, W., & Chan, J. Y. (2006). Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain Inhibition of nuclear translocation and transacting function. Journal of Biological Chemistry, 281(28), 19676–19687.

    Article  CAS  Google Scholar 

  • Wilson, T., & Carson, J. (2001). Rapid, high-throughput extraction of bacterial genomic DNA from selective-enrichment culture media. Letters in Applied Microbiology, 32(5), 326–330.

    Article  CAS  Google Scholar 

  • Yatera, K., Morimoto, Y., Ueno, S., Noguchi, S., Kawaguchi, T., Tanaka, F., et al. (2018). Cancer risks of hexavalent chromium in the respiratory tract. Journal of UOEH, 40(2), 157–172.

    Article  CAS  Google Scholar 

  • Yuan, W., Yang, N., & Li, X. (2016). Advances in understanding how heavy metal pollution triggers gastric cancer. BioMed Research International, 2016, 1–10.

    Google Scholar 

Download references

Acknowledgement

The author Anand Raj. D would like to acknowledge Bharathiar University for his Fellowship vide URF: C2/2023/2019. The authors are grateful to University Grant Commission (UGC, Govt of India) for the support provided to establish infrastructure in the Department of Biotechnology grant vide UGC/SAP/No.F.3-20/2013, through Special Assistance Program (SAP) and Department of Science and technology (DST) towards Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions vide (FIST) and DST-PURSE phase-II vide BU/DST-PURSE/2017/28.

Author information

Authors and Affiliations

Authors

Contributions

A.R.D. and P.S.R. conceived and designed the research; A.R.D. and B.V. carried out experiments and drafting the article; P.S.R. critically evaluated the article.

Corresponding author

Correspondence to Prabagaran Solai Ramatchandirane.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanapal, A.R., Venkidasamy, B. & Solai Ramatchandirane, P. Molecular characterization of stress tolerance genes associated with D. indicus strain under extreme environment conditions. Environ Geochem Health 43, 4905–4917 (2021). https://doi.org/10.1007/s10653-020-00788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00788-9

Keywords

Navigation