Skip to main content
Log in

Study of a New Solar-Powered Combined Absorption–Adsorption Cooling System (ABADS)

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Sorption cooling technology is considered to be a good alternative to traditional vapor compression cycles regarding energy savings and environmental issues. This technology has to be enhanced to overcome the problem of low efficacy. In this work, a novel solar-powered combined absorption–adsorption cooling system (ABADS) is proposed and investigated under different climatic conditions. The system combines a single-effect LiBr-H2O absorption chiller (ABS) and a single-stage silica gel/water adsorption chiller (ADS) in series configuration. TRNSYS simulation software integrated MATLAB code is used to simulate the solar-driven ABS, ADS, and ABADS mathematical models. Both of ABS and ADS models are validated experimentally with experimental data. Performance comparison between the proposed combined ABADS and the standalone ABS and ADS is also performed. Results shows that the proposed combined ABADS produced average monthly cooling capacity (19.86 kW) higher than that of ABS and ADS by 154.42% and 59.74%, respectively, around typical year. Furthermore, the overall COP (1.17) of ABADS is higher than that of the standalone ABS and ADS by 154.42% and 59.74%, respectively. Under the same hourly weather conditions of June 15 at 16:00 pm, cooling capacity of the ABADS is higher than that of the standalone ABS and ADS by 150% and 66%, respectively. The overall system COP of ABADS (1.16) improved by 60% and by 167% over the standalone ABS and ADS, respectively. In addition, the chilled water production is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Area, m2

C p :

Specific heat capacity, J kg-1k

M :

Mass, kg

\({\dot{m}}\) :

Mass flow rate, kg s-1

p s :

Saturated pressure, Pa

U :

Overall heat transfer coefficient, W m-1K

\(\Delta H_{\text{st}}\) :

Isosteric heat of adsorption, J kg-1

Al:

Aluminum

Ac:

Activated carbon (Water III)

Ads:

Adsorption

Cu:

Copper heat transfer tube

Chw:

Chilled water

Cond:

Condenser

Cwa:

Cooling water in adsorber/desorber

Cwc:

Cooling water in condenser

des:

Desorption

eva:

Evaporator

in:

Inlet

out:

Outlet

ref:

Refrigerant

w :

Water

References

  1. Harby, K.; Doaa, R.G.; Nader, S.K.; Mohamed, S.: H, Performance improvement of vapor compression cooling systems using evaporative condenser: an overview. Renew. Sustain. Energy Rev. 58, 347–360 (2016)

    Article  Google Scholar 

  2. Harby, K.; Fahad, A.: An investigation of energy savings in a split air-conditioner using commercial cooling pads with different thicknesses and wide range of climatic conditions. Energy 182, 321–336 (2019)

    Article  Google Scholar 

  3. Harby, K.: Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview. Renew. Sustain. Energy Rev. 73, 1247–1264 (2017)

    Article  Google Scholar 

  4. Ali, E.S.; Harby, K.; Askalany, A.A.; Diab, M.R.; Alsaman, A.S.: Weather effect on a solar powered hybrid adsorption desalination-cooling system: a case study of Egypt’s climate. Appl. Therm. Eng. 124, 663–672 (2017)

    Article  Google Scholar 

  5. Wang, R.Z.; Ge, T.S.; Chen, C.J.; Ma, Q.; Xiong, Z.Q.: Solar sorption cooling systems for residential applications: options and guidelines. Int. J. Refrigeration 32, 638–660 (2009)

    Article  Google Scholar 

  6. Ahmed, S.; Askalany, A.; Harby, K.; Ahmed, M.: Performance evaluation of a solar-driven adsorption desalination-cooling system. Energy 128, 196–207 (2017)

    Article  Google Scholar 

  7. Chen, J.F.; Dai, Y.J.; Wang, R.Z.: Experimental and analytical study on an air cooled single-effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings. Sol. Energy 151, 110–118 (2017)

    Article  Google Scholar 

  8. Saha, B.B.; El-Sharkawy, I.I.; Chakraborty, A.; Koyama, S.: Study on an activated carbon fiber–ethanol adsorption chiller: part I - system description and modelling. Int. J. Refrig 30, 86–95 (2007)

    Article  Google Scholar 

  9. Saha, B.B.; El-Sharkawy, I.I.; Koyama, S.; Lee, J.B.; Kuwahara, K.: Waste heat driven multi-bed adsorption chiller: heat exchangers overall thermal conductance on chiller performance. Heat Transf. Eng. 27, 80–87 (2006)

    Article  Google Scholar 

  10. Mohamed Ghazy, A.; Harby, A.K.; Ahmed, M.S.: Adsorption isotherms and kinetics of HFC-404A onto bituminous based granular activated carbon for storage and cooling applications. Appl. Therm. Eng. 105, 639–645 (2016)

    Article  Google Scholar 

  11. Saha, B.B.; Boelman, E.; Kashiwagi, T.: Computer simulation of a silica gel-water adsorption refrigeration cycle-the influence of operating conditions on cooling output and COP. ASHRAE Transactions 101, 348357 (1995)

    Google Scholar 

  12. Verde, M.; Harby, K.; de Boer, R.; Corberán, J.M.: Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: part II- Performance optimization under different real driving conditions. Energy 115, 996–1009 (2016)

    Article  Google Scholar 

  13. Harby, K.; Ali, E.S.; Almohammadi, K.M.: A novel combined reverse osmosis and hybrid absorption desalination-cooling system to increase overall water recovery and energy efficiency. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.125014

    Article  Google Scholar 

  14. Ehab, S.A.; Ahmed, A.A.; Harby, K.; Mohamed, R.D.; Ahmed, S.: A, Adsorption desalination-cooling system employing copper sulfate and driven by low grade heat sources. Appl. Therm. Eng. 136, 169–176 (2018)

    Article  Google Scholar 

  15. El-sharkawy, M.M.; Askalany, A.; Harby, K.; Ahmed, M.S.: Adsorption isotherms and kinetics of a mixture of Pentafluoroethane, 1,1,1,2-Tetrafluoroethane and Difluoromethane (HFC-407C) onto granular activated carbon. Appl. Therm. Eng. 93, 988–994 (2016)

    Article  Google Scholar 

  16. Almohammadi, K.M.; Harby, K.: Operational conditions optimization of a proposed solar-powered adsorption cooling system: experimental, modeling, and optimization algorithm techniques. Energy. 206, 118007 (2020)

    Article  Google Scholar 

  17. Verde, M.; Harby, K.; Corberán, J.M.: Optimization of thermal design and geometrical parameters of a flat tube-fin adsorbent bed for automobile air-conditioning. Appl. Therm. Eng. 111, 489–502 (2017)

    Article  Google Scholar 

  18. Banker, N.D.; Dutta, P.; Prasad, M.: P, Prasad M, Performance studies on mechanical + adsorption hybrid compression refrigeration cycles with HFC-134a. Int. J. Refrigeration 31, 1398–1406 (2008)

    Article  Google Scholar 

  19. Douss, N.; Meunier, F.: Experimental study of cascaded adsorption cycles. Chem. Eng. Sci. 44, 225–235 (1989)

    Article  Google Scholar 

  20. Kim, J.S.; Ziegler, F.; Lee, H.: Simulation of the compressor-assisted triple-effect H2O/LiBr absorption cooling cycles. Appl. Therm. Eng. 22, 295–308 (2002)

    Article  Google Scholar 

  21. Deng, S.; Dai, Y.J.; Wang, R.Z.: Comparison study on performance of a hybrid solar-assisted CO2 heat pump. Appl. Therm. Eng. 31, 17–18 (2011)

    Article  Google Scholar 

  22. Kairouani, L.; Nehdi, E.: Cooling performance and energy saving of a compression-absorption refrigeration system assisted by geothermal energy. Appl. Therm. Eng. 26, 288–294 (2006)

    Article  Google Scholar 

  23. Adnan, S.: Performance improvement of absorption refrigeration system using triple-pressure-level. Appl. Therm. Eng. 23, 1577–1593 (2003)

    Article  Google Scholar 

  24. Jain, V.; Sachdeva, G.; Singh Kachhwaha, S.; Patel, B.: Thermo-economic and environmental analyses based multi-objective optimization of vapor compression-absorption cascaded refrigeration system using NSGA-II technique. Energy Convers. Manag. 113, 230–242 (2016)

    Article  Google Scholar 

  25. Khairul, H.; Bidyut, B.S.; Anutosh, C.; Shigeru, K.; Kandadai, S.: Performance evaluation of combined adsorption refrigeration cycles. Int. J. Refrig 34, 129–137 (2011)

    Article  Google Scholar 

  26. Syed, M.A.; Anutosh, C.; Kai, C.L.: CO2-assisted compression-adsorption combined for cooling and Desalination. Energy Convers. Manag. 143, 538–552 (2017)

    Article  Google Scholar 

  27. Florides, G.A.; Kalogirou, S.A.; Tassou, S.A.; Wrobel, L.C.: Modelling, simulation and warming impact assessment of a domestic-size absorption solar cooling system. Appl. Therm. Eng. 22, 1313–1325 (2002)

    Article  Google Scholar 

  28. Rodríguez, J. 2013. Desarrollo de un Banco de Ensayos Multifuncional y de los Procedimientos para Caracterizar Equipos Térmicos de Refrigeración y Bombas de Calor de Pequeña Potencia. PhD Thesis, Rovira i Virgili University, Tarragona, Spain.

  29. Ortiz, M.; Barsun, H.; He, H.; Vorobieff, P.; Mammoli, A.: Modeling of a solar-assisted HVAC system with thermal storage. Energy Build. 42, 500–509 (2010)

    Article  Google Scholar 

  30. Bernardo, L.R.; Davidsson, H.; Karlsson, B.: Retrofitting domestic hot water heaters for solar water heating systems in single-family houses in a cold climate: a theoretical analysis. Energies 5, 4110–4131 (2012)

    Article  Google Scholar 

  31. Alam, K.C.; Saha, B.B.; Akisawa, A.: Adsorption cooling driven by solar collector: a case study for Tokyo solar data. Appl. Therm. Eng. 50, 1603–1609 (2013)

    Article  Google Scholar 

  32. Wang, L.W.; Wang, R.Z.; Oliveira, R.G.: A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 13, 518–534 (2009)

    Article  Google Scholar 

  33. Mazloumi, M.; Naghashzadegan, M.; Javaherdeh, K.: Simulation of solar lithium bromide-water absorption cooling system with parabolic trough collector. Energy Convers. Manag. 49, 2820–2832 (2008)

    Article  Google Scholar 

  34. TRNSYS 16 Documentation. A transient Simulation Program. Solar Energy Laboratory, University of Wisconsin, Madison, 2006.

  35. Ahmad, M.; Tiwari, G.: Optimization of tilt angle for solar collector to receive maximum radiation. Open Renew. Energy J. 2, 19–24 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Harby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harby, K., Almohammadi, K.M. Study of a New Solar-Powered Combined Absorption–Adsorption Cooling System (ABADS). Arab J Sci Eng 46, 2929–2945 (2021). https://doi.org/10.1007/s13369-020-05288-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05288-7

Keywords

Navigation