Issue 5, 2021

Interface-enhanced CO2 capture via the synthetic effects of a nanomaterial-supported ionic liquid thin film

Abstract

Ionic liquids (ILs) are effective CO2 capture media and recent experimental evidence has demonstrated that the addition of two-dimensional (2D) nanomaterials into ILs can effectively improve their CO2 capturing capability. However, an in-depth mechanism on how 2D nanomaterials enhance CO2 absorption is poorly documented. In this study, the adsorption of CO2 by a representative IL, namely 1-ethyl-3-methyl-imidazole-tetrafluoroborate ([EMIM][BF4]), coated on graphene (GRA, the prototype 2D nanomaterial) and nitrogenized graphene (C3N) was investigated by molecular dynamics simulations. The influence of the IL film thickness on the amount of CO2 adsorption was systematically analyzed. Our data clearly indicate that at the IL-gas interface the CO2 accumulation is significantly enhanced. In contrast, at the IL-GRA and IL-C3N interfaces, only slight enhancement was observed for CO2 accumulation. Quantitative calculations of the adsorption-free energy for CO2 inside the IL film further support the simulation results. Our present results also reveal that the sub-nanometer IL film possesses a considerably high CO2 capture efficiency because of the formation of the reduced bulk IL region. Moreover, the nanomaterial substrate surfaces can effectively accelerate the diffusion of CO2, which is beneficial for the CO2 mass transfer. In general, our theoretical study provides a deep microscopic understanding of the CO2 capture by nanomaterials and IL composites. These results could benefit the design and fabrication of a high-performance CO2 capture and storage medium through the synthetic effects of ILs and nanomaterials.

Graphical abstract: Interface-enhanced CO2 capture via the synthetic effects of a nanomaterial-supported ionic liquid thin film

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2020
Accepted
27 Dec 2020
First published
28 Dec 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2021,3, 1397-1403

Interface-enhanced CO2 capture via the synthetic effects of a nanomaterial-supported ionic liquid thin film

Y. Liu, Y. Yang, Y. Qu, Y. Li, M. Zhao and W. Li, Nanoscale Adv., 2021, 3, 1397 DOI: 10.1039/D0NA00875C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements