Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 22, 2021

Photophysical property change of N-(5-bromo-salicylidene)-3-aminoethylpyridine monohydrated crystals via dehydration phase transition

  • Haruki Sugiyama EMAIL logo

Abstract

The crystals of N-salicylideneaniline (SA) and SA derivatives are classic functional materials that exhibit reversible colour changes (photochromism) and/or excited-state intramolecular proton transfer (ESIPT) fluorescence emission under ultraviolet (UV) light irradiation. In this study, a novel SA derivative was synthesised with an extended alkyl chain, N-(5-bromo-salicylidene)-3-aminoethylpyridine (5Br-SAEP). The photophysical properties of 5Br-SAEP were characterised in the crystalline state. The monohydrated crystal (1H) of 5Br-SAEP was dehydrated to form the anhydrous crystal (1A) at a relative humidity of less than 76%. The photochromic activity was switched by the dehydration phase transition from the non-photochromic 1H to the photochromic 1A. The quantum yield of fluorescence decreased significantly from 8% in 1H to 3% in 1A. The in situ change of photophysical properties occurred due to the change in the crystal structure. This indicated the potential of the solvated crystals of the SAEP derivatives for applications in novel switching or smart materials.


Corresponding author: Haruki Sugiyama, Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku, Yokohama, Kanagawa223-8521, Japan, E-mail:

Funding source: Tokyo Institute of Technology

Funding source: Keio Gijuku Academic Development Fund

Acknowledgements

Mr Ishihara of the Instrumental Analysis Center at Yokohama National University is thanked for excellent technical support in recording the solid-state fluorescent spectra. Prof. Hidehiro Uekusa of the Tokyo Institute of Technology is acknowledged for providing great support. Editage (www.editage.com) for English language editing is thanked. This research was supported by Keio Gijuku Academic Development Fund.

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by Keio Gijuku Academic Development Fund.

  3. Conflict of interest statement: The author states no conflict of interest.

References

1. Cohen, M. D., Schmidt, G. M. J., Flavian, S. Topochemistry. Part VI Experiments on photochromy and thermochromy of crystalline anils of salicylaldehydes. J. Chem. Soc. 1964, 2041; https://doi.org/10.1039/jr9640002041.Search in Google Scholar

2. Hikshberg, M. D., Cohen, Y., Schmidt, G. M. J. Topochemistry. Part VII. The photoactivity of anils of salicylaldehydes in rigid solutions. J. Chem. Soc. 1964, 2051; https://doi.org/10.1039/JR9640002051.Search in Google Scholar

3. Sugiyama, H. Molecular planarity and crystal structures of N-salicylideneaminopyrazine derivatives. X-Ray Struct. Anal. Online 2018, 34, 57; https://doi.org/10.2116/xraystruct.34.57.Search in Google Scholar

4. Houjou, H., Suzuki, Y., Shen, Q.-W., Yoshikawa, I., Mutai, T. Synthesis and properties of salicylaldehydes fine-tuned by modular assembly using “plug-and-socket”-type extendibility. Chemistry 2017, 23, 8286; https://doi.org/10.1002/chem.201701141.Search in Google Scholar PubMed

5. Hadjoudis, E., Mavridis, I. M. Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem. Soc. Rev. 2004, 33, 579; https://doi.org/10.1039/b303644h.Search in Google Scholar PubMed

6. Amimoto, K., Kawato, T. Photochromism of organic compounds in the crystal state. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 207; https://doi.org/10.1016/j.jphotochemrev.2005.12.002.Search in Google Scholar

7. Robert, F., Naik, A. D., Tinant, B., Robiette, R., Garcia, Y. Insights into the origin of solid-state photochromism and thermochromism of N-salicylideneanils: the intriguing case of aminopyridines. Chem. Eur J. 2009, 15, 4327; https://doi.org/10.1002/chem.200801932.Search in Google Scholar PubMed

8. Staehle, I. O., Rodríguez-Molina, B., Khan, S. I., Garcia-Garibay, M. A. Engineered photochromism in crystalline salicylidene anilines by facilitating rotation to reach the colored trans-keto form. Cryst. Growth Des. 2014, 14, 3667; https://doi.org/10.1021/cg500762a.Search in Google Scholar

9. Seipel, S., Yu, J., Periyasamy, A. P., Viková, M., Vik, M., Nierstrasz, V. A. Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications. RSC Adv. 2018, 8, 28395; https://doi.org/10.1039/c8ra05856c.Search in Google Scholar PubMed PubMed Central

10. Kawata, S., Kawata, Y. Three-dimensional optical data storage using photochromic materials. Chem. Rev. 2000, 100, 1777; https://doi.org/10.1021/cr980073p.Search in Google Scholar PubMed

11. Irie, M. Photochromism: memories and switches introduction. Chem. Rev. 2000, 100, 1683; https://doi.org/10.1021/cr980068l.Search in Google Scholar PubMed

12. Sliwa, M., Mouton, N., Ruckebusch, C., Poisson, L., Idrissi, A., Aloïse, S., Potier, L., Dubois, J., Poizat, O., Buntinx, G. Investigation of ultrafast photoinduced processes for salicylidene aniline in solution and gas phase: toward a general photo-dynamical scheme. Photochem. Photobiol. Sci. 2010, 9, 661 https://doi.org/10.1039/b9pp00207c.Search in Google Scholar PubMed

13. Ortiz-Sánchez, J. M., Gelabert, R., Moreno, M., Lluch, J. M. Electronic-structure and quantum dynamical study of the photochromism of the aromatic Schiff base salicylideneaniline. J. Chem. Phys. 2008, 129, 214308-1–214308-11; https://doi.org/10.1063/1.3032215.Search in Google Scholar PubMed

14. Harada, J., Uekusa, H., Ohashi, Y. X-ray analysis of structural changes in photochromic salicylideneaniline crystals. Solid-state reaction induced by two-photon excitation. J. Am. Chem. Soc. 1999, 121, 5809; https://doi.org/10.1021/ja9842969.Search in Google Scholar

15. Carletta, A., Buol, X., Leyssens, T., Champagne, B., Wouters, J. Polymorphic and isomorphic cocrystals of a N-Salicylidene-3-aminopyridine with dicarboxylic acids: tuning of solid-state photo- and thermochromism. J. Phys. Chem. C 2016, 120, 10001; https://doi.org/10.1021/acs.jpcc.6b02734.Search in Google Scholar

16. Johmoto, K., Sekine, A., Uekusa, H. Photochromism control of salicylideneaniline derivatives by acid-base co-crystallization. Cryst. Growth Des. 2012, 12, 4779; https://doi.org/10.1021/cg300454q.Search in Google Scholar

17. Johmoto, K., Ishida, T., Sekine, A., Uekusa, H., Ohashi, Y. Relation between photochromic properties and molecular structures in salicylideneaniline crystals. Acta Crystallogr. Sect. B Struct. Sci. 2012, 68, 297; https://doi.org/10.1107/s0108768112010993.Search in Google Scholar

18. Jacquemin, P. L., Robeyns, K., Devillers, M., Garcia, Y. Photochromism emergence in N-salicylidene P-aminobenzenesulfonate diallylammonium salts. Chem. Eur J. 2015, 21, 6832; https://doi.org/10.1002/chem.201406573.Search in Google Scholar PubMed

19. Sugiyama, H., Uekusa, H. Relationship between crystal structures and photochromic properties of: N -salicylideneaminopyridine derivatives. CrystEngComm 2018, 20, 2144; https://doi.org/10.1039/c8ce00003d.Search in Google Scholar

20. Hayase, N., Sugiyama, H., Uekusa, H., Shibata, Y., Tanaka, K. Rhodium-catalyzed synthesis, crystal structures, and photophysical properties of [6]Cycloparaphenylene tetracarboxylates. Org. Lett. 2019, 21, 3895; https://doi.org/10.1021/acs.orglett.9b00820.Search in Google Scholar PubMed

21. Sugiyama, H. Hydrogen-bonding patterns in 2,2-bis(4-methylphenyl)hexafluoropropane pyridinium and ethylenediammonium salt crystals. Acta Crystallogr. Sect. E Crystallogr. Commun. 2020, 76, 742; https://doi.org/10.1107/s2056989020005575.Search in Google Scholar PubMed PubMed Central

22. Mathivanan, M., Tharmalingam, B., Lin, C. H., Pandiyan, B. V., Thiagarajan, V., Murugesapandian, B. ESIPT-active multi-color aggregation-induced emission features of triphenylamine-salicylaldehyde-based unsymmetrical azine family. CrystEngComm 2019, 22, 213.10.1039/C9CE01490JSearch in Google Scholar

23. Hu, J. W., Tsai, H. Y., Fang, S. K., Chang, C. W., Wang, L. C., Chen, K. Y. Conformationally locked salicylideneaniline derivatives with strong ESIPT fluorescence. Dyes Pigments 2017, 145, 493; https://doi.org/10.1016/j.dyepig.2017.06.037.Search in Google Scholar

24. Massue, J., Jacquemin, D., Ulrich, G. Molecular engineering of excited-state intramolecular proton transfer (ESIPT) dual and triple emitters. Chem. Lett. 2018, 47, 1083; https://doi.org/10.1246/cl.180495.Search in Google Scholar

25. Wang, X., Li, H., Wu, Y., Xu, Z., Fu, H. Tunable morphology of the self-assembled organic microcrystals for the efficient laser optical resonator by molecular modulation. J. Am. Chem. Soc. 2014, 136, 16602; https://doi.org/10.1021/ja5088503.Search in Google Scholar PubMed

26. Lin, W. C., Fang, S. K., Hu, J. W., Tsai, H. Y., Chen, K. Y. Ratiometric fluorescent/colorimetric cyanide-selective sensor based on excited-state intramolecular charge transfer-excited-state intramolecular proton transfer switching. Anal. Chem. 2014, 86, 4648; https://doi.org/10.1021/ac501024d.Search in Google Scholar PubMed

27. Samuel, I. D. W., Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 2007, 107, 1272; https://doi.org/10.1021/cr050152i.Search in Google Scholar PubMed

28. Duarte, L. G. T. A., Germino, J. C., Berbigier, J. F., Barboza, C. A., Faleiros, M. M., de Alencar Simoni, D., Galante, M. T., de Holanda, M. S., Rodembusch, F. S., Atvars, T. D. White-light generation from all-solution-processed OLEDs using a benzothiazole-salophen derivative reactive to the ESIPT process. Phys. Chem. Chem. Phys. 2019, 21, 1172; https://doi.org/10.1039/c8cp06485g.Search in Google Scholar PubMed

29. Kanosue, K., Shimosaka, T., Wakita, J., Ando, S. Polyimide and imide compound exhibiting bright red fluorescence with very large stokes shifts via excited-state intramolecular proton transfer. Macromolecules 2015, 48, 1777; https://doi.org/10.1021/ma502456f.Search in Google Scholar

30. Sugiyama, H., Johmoto, K., Sekine, A., Uekusa, H. Reversible on/off switching of photochromic properties in: N-salicylideneaniline co-crystals by heating and humidification. CrystEngComm 2019, 21, 3170; https://doi.org/10.1039/c9ce00442d.Search in Google Scholar

31. Kato, M., Ito, H., Hasegawa, M., Ishii, K. Soft crystals: flexible response systems with high structural order. Chem. Eur J. 2019, 25, 5105; https://doi.org/10.1002/chem.201805641.Search in Google Scholar PubMed PubMed Central

32. Borbone, F., Tuzi, A., Panunzi, B., Piotto, S. On-off mechano-responsive switching of ESIPT luminescence in polymorphic n-salicylidene-4-amino-2-methylbenzotriazole. Cryst. Growth Des. 2017, 17, 5517; https://doi.org/10.1021/acs.cgd.7b01047.Search in Google Scholar

33. Sugiyama, H., Johmoto, K., Sekine, A., Uekusa, H. In-situ photochromism switching with crystal jumping through the deammoniation of N-salicylideneaniline ammonium salt. Cryst. Growth Des. 2019, 19, 4324; https://doi.org/10.1021/acs.cgd.9b00039.Search in Google Scholar

34. Li, N. Y., Liu, D., Ren, Z. G., Lollar, C., Lang, J. P., Zhou, H. C. Controllable fluorescence switching of a coordination chain based on the photoinduced single-crystal-to-single-crystal reversible transformation of a syn-[2.2]Metacyclophane. Inorg. Chem. 2018, 57, 849; https://doi.org/10.1021/acs.inorgchem.7b02817.Search in Google Scholar PubMed

35. Brink, A., Kroon, R. E., Visser, H. G., Van Rensburg, C. E. J., Roodt, A. Designing model imino bifunctional chelators for radiopharmaceuticals- in vitro antitumor activity, photoluminescence and structural analysis. New J. Chem. 2018, 42, 5193; https://doi.org/10.1039/c7nj04208f.Search in Google Scholar

36. Robert, F., Jacquemin, P. L., Tinant, B., Garcia, Y. Trans-keto* form detection in non photochromic N-salicylidene aminomethylpyridines. CrystEngComm 2012, 14, 4396; https://doi.org/10.1039/c2ce00006g.Search in Google Scholar

37. Chatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T., Mavridis, I. M. Keto forms of salicylaldehyde schiff bases: structural and theoretical aspects. J. Phys. Chem. B 2006, 110, 23701; https://doi.org/10.1021/jp064110p.Search in Google Scholar PubMed

38. Higashi, T. Abscor; Rigaku Corporation: Tokyo, Japan, 1995.Search in Google Scholar

39. Sheldrick, G. M. Shelxl – integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

40. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

41. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. Sect. E Res. Commun. 2020, 76, 1; https://doi.org/10.1107/s2056989019016244.Search in Google Scholar

42. Desiraju, G. R., Parthasarathy, R. The nature of Halogen···Halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? J. Am. Chem. Soc. 1989, 111, 8725; https://doi.org/10.1021/ja00205a027.Search in Google Scholar

43. Fujii, K., Uekusa, H., Itoda, N., Yonemochi, E., Terada, K. Mechanism of dehydration-hydration processes of lisinopril dihydrate investigated by ab initio powder X-ray diffraction analysis. Cryst. Growth Des. 2012, 12, 6165; https://doi.org/10.1021/cg3013377.Search in Google Scholar

44. Kiang, Y. H., Cheung, E., Stephens, P. W., Nagapudi, K. Structural studies of a non-stoichiometric channel hydrate using high resolution X-ray powder diffraction, solid-state nuclear magnetic resonance, and moisture sorption methods. J. Pharmaceut. Sci. 2014, 103, 2809; https://doi.org/10.1002/jps.23873.Search in Google Scholar PubMed

45. Fujiwara, T., Harada, J., Ogawa, K. Solid-state thermochromism studied by variable-temperature diffuse reflectance spectroscopy. A new perspective on the chromism of salicylideneanilines. J. Phys. Chem. B 2004, 108, 4035; https://doi.org/10.1021/jp037438g.Search in Google Scholar

46. Yamazaki, Y., Sekine, A., Uekusa, H. In situ control of photochromic behavior through dual photo-isomerization using cobaloxime complexes with salicylidene-3-aminopyridine and 3-cyanopropyl ligands. Cryst. Growth Des. 2017, 17, 19; https://doi.org/10.1021/acs.cgd.6b00602.Search in Google Scholar

47. Zhang, Z., Song, X., Wang, S., Li, F., Zhang, H., Ye, K., Wang, Y. Two-dimensional organic single crystals with scale regulated, phase-switchable, polymorphism-dependent, and amplified spontaneous emission properties. J. Phys. Chem. Lett. 2016, 7, 1697; https://doi.org/10.1021/acs.jpclett.6b00704.Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0091).


Received: 2020-11-05
Accepted: 2021-01-07
Published Online: 2021-01-22
Published in Print: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2020-0091/html
Scroll to top button