Research Letters
Climate change threatens the woody plant taxonomic and functional diversities of the Restinga vegetation in Brazil

https://doi.org/10.1016/j.pecon.2020.12.006Get rights and content
Under a Creative Commons license
open access

Highlights

  • The Restinga is an Atlantic Forest neglected phytophysiognomy.

  • 2050 climatic projections show species loss may reach 19%.

  • Beta-diversity heterogenization and functional homogenization are expected.

  • These results warn for a critical loss of biodiversity in progress.

  • The Restinga should be included in plans for adaptation to climate change.

Abstract

Climate change may impose extreme conditions which potentially affect species’ distributions, leading to spatio-temporal variation in biodiversity and ecosystem services patterns. Here we compared current climate conditions to future climate scenarios projected to 2050 to assess potential changes in the spatio-temporal patterns of the taxonomic and functional diversities of the woody species of the Restinga vegetation in Brazil. We generated Ecological Niche Models (ENM) for 796 woody plant species from which we estimated the spatio-temporal changes of beta diversity components, the community-weighted means (CWM) of selected traits and functional diversity indices. The pessimistic scenario indicated an overall threefold increase in woody plant species loss compared to the optimistic scenario, whereas at regional scales, species loss may reach percentages as high as 19%. Conversely, beta diversity may increase in the future, in which the turnover component had a greater contribution than nestedness. The CWM projection emphasized contrasts among traits and ecoregions, with an increase in most analysed traits (stem wood density, seed length and fruit length) and a decrease in one of them (maximum plant height). Functional divergence and richness may decrease in future, while functional evenness may increase. Our study highlighted important potential changes in the distribution of biodiversity that could lead to biotic homogenization in the Restinga vegetation and calls for the inclusion of this marginalized vegetation in plans for mitigation and adaptation to climate change.

Keywords

Atlantic forest
Beta diversity heterogenization
Coastal vegetation
Diversity partitioning
Functional diversity homogenization
Ecological niche modeling

Cited by (0)