Skip to main content
Log in

Selective Fluorescent Sensing of Adenine Via the Emissive Enhancement of a Simple Cobalt Porphyrin

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Porphyrins absorb strongly in the visible region and are also excellent fluorophores that emit in the visible region that make them excellent candidates for fluorescence sensing and in vivo imaging. This work describes the fluorescence determination of adenine using cobalt complex of a simple porphyrin. Tetraphenylporphyrin (TPP) and tetraphenylpophyrinatocobalt(II) (CoTPP) were synthesized and characterised. TPP on metallation with cobalt resulted in the red shift of fluorescence emission in the region 652 nm and 716 nm and showed an enhancement in the emission peaks with the addition of the nucleobase, adenine. CoTPP is found to be an efficient fluorescent sensor for adenine in DMF solvent. The fluorescence enhancement is due to the formation of the ground state complex formation between adenine and CoTPP, which is supported by experimental evidences from UV- visible spectra, time resolved fluorescence life time measurements etc. The detection limit of adenine was found to be 4.2 μM using the CoTPP fluorescent probe. The proposed sensor is found to be highly selective for adenine in presence of other nitrogen bases like guanine, cytosine, uracil, thymine, alanine, histidine etc. in 1:1 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pang S, Zhang Y, Wu C, Feng S (2016) Fluorescent carbon dots sensor for highly sensitive detection of guanine. Sens Actuators B Chem 222:857–863. https://doi.org/10.1016/j.snb.2015.09.037

    Article  CAS  Google Scholar 

  2. Yang FQ, Guan J, Li SP (2007) Fast simultaneous determination of 14 nucleosides and nucleobases in cultured cordyceps using ultra-performance liquid chromatography. Talanta 73:269–273. https://doi.org/10.1016/j.talanta.2007.03.034

    Article  CAS  PubMed  Google Scholar 

  3. Niu X, Yang W, Ren J, Guo H, Long S, Chen JJ, Gao JH (2012) Electrochemical behaviours and simultaneous determination of guanine and adenine based on graphene-ionic liquid-chitosan composite film modified glassy carbon electrode. Electrochim Acta 80:346–353. https://doi.org/10.1016/j.electacta.2012.07.041

    Article  CAS  Google Scholar 

  4. Denessiouk KA, Rantanen VV, Johnson MS (2001) Adenine recognition a motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins. Proteins 44:282–291. https://doi.org/10.1002/prot.1093

    Article  CAS  PubMed  Google Scholar 

  5. Tzeng Y, Lin BY (2020) Silver SERS adenine sensors with a very low detection limit. Biosensors 10:53–65. https://doi.org/10.3390/bios10050053

    Article  CAS  PubMed Central  Google Scholar 

  6. Zhang J, Han D, Wang S, Zhang X, Yang R, Ji Y, Yu X (2019) Electrochemical detection of adenine and guanine using a three-dimensional WS2 nanosheet/graphite microfiber hybrid electrode. Electrochem Commun 99:75–80. https://doi.org/10.1016/j.elecom.2019.01.007

    Article  CAS  Google Scholar 

  7. Ortolani TS, Pereira TS, Assumpaco MH, Vicentini FC, de Oliveira GG, Janegitz BC (2019) Electrochemical sensing of purines guanine and adenine using single-walled carbon nanohorns and nanocellulose. Electrochim Acta 298:893–900. https://doi.org/10.1016/j.electacta.2018.12.114

    Article  CAS  Google Scholar 

  8. Ng KL, Khor SM (2017) Graphite-based nanocomposite electrochemical sensor for multiplex detection of adenine, guanine, thymine, and cytosine: a biomedical prospect for studying DNA damage. Anal Chem 89:10004–10012. https://doi.org/10.1021/acs.analchem.7b02432

    Article  CAS  PubMed  Google Scholar 

  9. Li D, Yang XL, Xiao BL, Geng FY, Hong J, Sheibani N, Moosavi-Movahedi AA (2017) Detection of guanine and adenine using an aminated reduced graphene oxide functional membrane-modified glassy carbon electrode. Sensors 17:1652–1662. https://doi.org/10.3390/s17071652

    Article  CAS  Google Scholar 

  10. Niedzialkowski P, Bogdanowicz R, Zieba P, Wysocka Sobaszek JRM, Ossowski T (2015) Melamine-modified Boron-doped diamond towards enhanced detection of adenine, guanine and caffeine. Electroanalysis 28:211–221. https://doi.org/10.1002/elan.201500528

    Article  CAS  Google Scholar 

  11. Spichiger Keller UE (2008) Chemical sensors and biosensors for medical and biological applications. Wiley-VCH, USA

    Google Scholar 

  12. Mason W (1999) Fluorescent and luminescent probes for biological activity, 2nd edn. Academic Press, New York

    Google Scholar 

  13. Zhang Y, Yang R, Liu F, Li KN (2004) Fluorescent sensor for imidazole derivatives based on monomer-dimer equilibrium of a zinc porphyrin complex in a polymeric film. Anal Chem 76:7336–7345. https://doi.org/10.1021/ac049477

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Wang H, Yang RH (2007) Colorimetric and fluorescent sensing of SCN- based on meso-tetraphenylporphyrin/meso-tetraphenylporphyrincobalt (II) system. Sensors 7:410–419 PMC3756729

    Article  Google Scholar 

  15. Lv Y, Cao M, Li J, Wang J (2013) A sensitive ratiometric fluorescent sensor for zinc(II) with high selectivity. Sensors 13:3131–3141. https://doi.org/10.3390/s130303131

    Article  CAS  PubMed  Google Scholar 

  16. Meerabai Devi L, Negi DPS (2011) Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles. Nanotechnology 22:245502–245506. https://doi.org/10.1088/0957-4484/22/24/245502

    Article  CAS  PubMed  Google Scholar 

  17. Yuki H, Sempuku C, Park M, Takiura K (1972) Fluorometric determination of adenine and its derivatives by reaction with glyoxal hydrate trimer. Anal Biochem 46:123–128. https://doi.org/10.1016/0003-2697(72)90403-4

    Article  CAS  PubMed  Google Scholar 

  18. Duan R, Li C, Liu S, Liu Z, Li Y, Yuan Y, Hu X (2016) Determination of adenine based on the fluorescence recovery of the L-Tryptophan–Cu2+ complex. Spectrochim Acta Part A 152:272–277. https://doi.org/10.1016/j.saa.2015.07.003

    Article  CAS  Google Scholar 

  19. Pal S, Chakraborty M, Sarkar N (2020) Graphene oxide functionalized with 5-aminophenanthroline for selective detection of adenine through fluorescence “Turn-Off–On”response. ACS Appl Nano Mater 3:3532–3539. https://doi.org/10.1021/acsanm.0c00212

    Article  CAS  Google Scholar 

  20. Yue J, Li L, Miao P, Wang Z, Chang Z et al (2019) One-step synthesis of acriflavine-based carbon dots for adenine detection and a theoretical study on the detection mechanism. Microchem J 148:73–78. https://doi.org/10.1016/j.microc.2019.04.041

    Article  CAS  Google Scholar 

  21. Suryawanshi SB, Deshmukh GR, Bodake AJ, Patil SR (2020) Quinoxaline based nanoprobe for selective detection of Adenine in aqueous medium: Application to Biological sample. Journal of Emerging Technologies and Innovative Research (JETIR) 7:139–145 JETIRDI06027

    Google Scholar 

  22. Jungsuttiwong S, Sirithip K, Prachumrak N, Tarsang R, Sudyoadsuk T, Namuangruk S, Kungwan N, Promarak V, Keawin T (2017) Significant enhancement in the performance of porphyrin- based dyes for dye-sensitized solar cells: aggregation control by chenodeoxycholic acid. New J Chem 41:7081–7091. https://doi.org/10.1039/C7NJ01184A

    Article  CAS  Google Scholar 

  23. Vaughan AA, Baron MG, Narayanaswamy R (1996) Optical ammonia sensing films based on an immobilized metalloporphyrin. Anal Comm 33:393–396. https://doi.org/10.1039/AC9963300393

    Article  CAS  Google Scholar 

  24. Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713. https://doi.org/10.1038/35021028

    Article  CAS  PubMed  Google Scholar 

  25. Filippini D, Alimelli A, Natale CD, Paolesse R, D’Amico A, Lundström I (2006) Chemical sensing with familiar devices. Angew Chem 45:3800–3803. https://doi.org/10.1002/anie.200600050

    Article  CAS  Google Scholar 

  26. He C, He Q, Deng C, Shi L, Zhu D, Fu Y, Cao H, Cheng J (2010) Turn on fluorescence sensing of vapor phase electron donating amines via tetraphenylporphyrin or metallophenylporphrin doped polyfluorene. Chem Commun 46:7536–7538. https://doi.org/10.1039/C0CC01972K

    Article  CAS  Google Scholar 

  27. Kim J, Lim SH, Yoon Y, Thangadurai TD, Yoon S (2011) A fluorescent ammonia sensor based on a porphyrin cobalt (II)–dansyl complex. Tetrahedron Lett 52:2645–2648. https://doi.org/10.1016/j.tetlet.2011.03.048

    Article  CAS  Google Scholar 

  28. Jung HS, Verwlist P, Kim WY, Kim JS (2016) Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem Soc Rev 45:1242–1256. https://doi.org/10.1039/c5cs00494b

    Article  CAS  PubMed  Google Scholar 

  29. El-Shishtawy RM, Asiri AM, Basaif SA, Sobahi TR (2010) Synthesis of a new β -naphthothiazole monomethine cyanine dye for the detection of DNA in aqueous solution. Spectrochim Acta Part A 75:1605–1609. https://doi.org/10.1016/j.saa.2010.02.026

    Article  CAS  Google Scholar 

  30. Lu E, Peng X, Song F, Fan J (2005) A novel fluorescent sensor for triplex DNA. Bioorg Med Chem Lett 15:255–257. https://doi.org/10.1016/j.bmcl.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  31. Antony T, Thomas T, Sigal LH, Shirahata A, Thomas TJ (2001) A molecular beacon strategy for the thermodynamic characterization of triplex DNA: triplex formation at the promoter region of cyclin D1*. Biochemistry 7:9387–9395. https://doi.org/10.1021/bi010397z

    Article  CAS  Google Scholar 

  32. Chen Z, Zhang H, Ma X, Lin Z, Zhang L, Chen G (2005) A novel fluorescent reagent for recognition of triplex DNA with high specificity and selectivity. Analyst 140:7742–7747. https://doi.org/10.1039/C5AN01852H7

    Article  Google Scholar 

  33. Vaishnavi E, Renganathan R (2014) Turn-on-off-on fluorescence switching of quantum dots–cationic porphyrin nanohybrid: a sensor for DNA. Analyst 139:225–234. https://doi.org/10.1039/c3an01871g

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Z, Du Y, Zhang L, Dong S (2012) A label-free, G-quadruplex DNA zyme-based fluorescent probe for signal-amplified DNA detection and turn-on assay of endonuclease. Biosens Bioelectron 34:100–105. https://doi.org/10.1016/j.bios.2012.01.024

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Li H, Fang G, Zhou J, Cao D (2014) Fluorescence enhancement of water-soluble porphyrin-containing conjugated polymer induced by DNA and cellular imaging in living cells. Sens Actuators B Chem 196:653–662. https://doi.org/10.1016/j.snb.2014.02.056

    Article  CAS  Google Scholar 

  36. Arthanari H, Basu S, Kawano TL, Bolton PH (1998) Fluorescent dyes specific for quadruplex DNA. Nucleic Acids Res 26:3724–3728. https://doi.org/10.1093/nar/26.16.3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J, Weli J, Guo L, Zhang C, Jiao Y, Shuang S, Dong C (2008) Study on spectroscopic characterization of Cu porphyrin/Co porphyrin and their interactions with ctDNA. Talanta 76:34–39. https://doi.org/10.1016/j.talanta.2008.01.065

    Article  CAS  PubMed  Google Scholar 

  38. Asian K, Huang J, Wilson GM, Geddes CD (2006) Metal-enhanced fluorescence-based RNA sensing. J Am Chem Soc 128:4206–4207. https://doi.org/10.1021/ja0601179

    Article  CAS  Google Scholar 

  39. Ying ZM, Wu Z, Tu B, Tan W, Jiang JH (2017) Genetically encoded fluorescent RNA sensor for ratiometric imaging of microRNA in living tumor cells. J Am Chem Soc 139:9779–9782. https://doi.org/10.1021/jacs.7b04527

    Article  CAS  PubMed  Google Scholar 

  40. Li H, Zhang Y, Wang L, Tian J, Sun X (2010) Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun 47:961–963. https://doi.org/10.1039/C0CC04326E

    Article  Google Scholar 

  41. Zhao XH, Gong L, Zhang XB, Yang B, Fu T, Hu R, Tan W, Yu W (2013) Versatile DNAzyme-based amplified biosensing platforms for nucleic acid, protein, and enzyme activity detection. Anal Chem 85:3614–3620. https://doi.org/10.1021/ac303457u

    Article  CAS  PubMed  Google Scholar 

  42. Adler AD, Longo FR, Shergalis W (1964) Mechanistic investigations of porphyrin Syntheses. I. preliminary studies on ms-tetraphenylporphin. J Am Chem Soc 86:3145–3149. https://doi.org/10.1021/ja01069a035

    Article  CAS  Google Scholar 

  43. Fan Y, Huang KJ, Niu DJ, Yang CP, Jing QS (2011) TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim Acta 56:4685–4690. https://doi.org/10.1016/j.electacta.2011.02.114

    Article  CAS  Google Scholar 

  44. Li L, Lu Y, Ding Y, Zhang F, Wang Y (2011) Facile aqueous synthesis of functionalized CdTe nanoparticles and their application as fluorescence probes for determination of adenine and guanine. Can J Chem 90:173–179. https://doi.org/10.1139/v11-144

    Article  Google Scholar 

  45. Chan TY, Liu TY, Wang KS, Tsai KT, Chen ZX, Chang YC, Tseng YQ, Wang CH, Wang JK, Wang YL (2017) SERS detection of biomolecules by highly sensitive and reproducible Raman-enhancing nanoparticle array. Nanoscale Res Lett 12:344–351. https://doi.org/10.1186/s11671-017-2121-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zou L, Li Y, Ye B (2011) Voltammetric sensing of guanine and adenine using a glassy carbon electrode modified with a tetraoxocalix[2]arene[2]triazine Langmuir-Blodgett film. Microchim Acta 173:285–291. https://doi.org/10.1007/s00604-011-0563-x

    Article  CAS  Google Scholar 

  47. Zhou Y, Yan H (2014) Xie Q, Yao S. Determination of guanine and adenine by high-performance liquid chromatography with a self-fabricated wall-jet/thin-layer electrochemical detector at a glassy carbon electrode Talanta 134:354–359. https://doi.org/10.1016/j.talanta.2014.11.042

    Article  CAS  Google Scholar 

  48. Jesny S, Kumar KG (2018) Poly(para amino benzene sulfonic acid) modified glassy carbon electrode for the simultaneous as well as individual voltammetric determination of guanine, adenine and uric acid. J Electrochem Soc 165:720–726. https://doi.org/10.1149/2.0651814jes

    Article  CAS  Google Scholar 

  49. Jesny S, Shalini M, Kumar KG (2016) Simultaneous determination of guanine and adenine in the presence of uric acid by a poly(para toluene sulfonic acid) mediated electrochemical sensor in alkaline medium. RSC Adv 6:75741–75748. https://doi.org/10.1039/c6ra13567f

    Article  CAS  Google Scholar 

  50. Rawat KA, Kailasa SK (2016) 2,3,4-Trihydroxy benzophenone as a novel reducing agent for one-step synthesis of size optimized gold nanoparticles and their application in colorimetric sensing of adenine at nanomolar concentration. RSC Adv 6:11099–11108. https://doi.org/10.1039/C5RA21634F

    Article  CAS  Google Scholar 

  51. Liu H, Wang G, Chen D, Zhang W, Li C, Fang B (2008) Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sens Actuators B Chem 128:414–421. https://doi.org/10.1016/j.snb.2007.06.028

    Article  CAS  Google Scholar 

  52. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL, Xiong XQ (2011) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B Biointerfaces 82:543–549. https://doi.org/10.1016/j.colsurfb.2010.10.014

    Article  CAS  PubMed  Google Scholar 

  53. Kaur B, Srivastava R (2014) Synthesis of ionic liquids coated nanocrystalline zeolite materials and their application in the simultaneous determination of adenine, cytosine, guanine, and thymine. Electrochim Acta 133:428–439. https://doi.org/10.1016/j.electacta.2014.04.019

    Article  CAS  Google Scholar 

  54. Yang T, Yang R, Chen H, Nan F, Ge T, Jiao K (2015) Electrocatalytic activity of molybdenum disulfide nanosheets enhanced by self-doped polyaniline for highly sensitive and synergistic determination of adenine and guanine. ACS Appl Mater Interfaces 7:2867–2872. https://doi.org/10.1021/am5081716

    Article  CAS  PubMed  Google Scholar 

  55. Feng LJ, Zhang XH, Liu P, Xiong HY, Wang SF (2011) An electrochemical sensor based on single-stranded DNA–poly(sulfosalicylic acid) composite film for simultaneous determination of adenine, guanine, and thymine. Anal Biochem 419:71–75. https://doi.org/10.1016/j.ab.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  56. Lin ZM, Feng WZ, Leung HK (1991) Photoinduced energy and electron transfer in pyrene–porphyrin, porphyrin–benzoquinone binary systems and the pyrene–porphyri–benzoquinone ternary system. J Chem Soc Chem Commun 4:209–211. https://doi.org/10.1039/C39910000209

    Article  Google Scholar 

  57. Walker FA (1973) Steric and electronic effects in the coordination of amines to a cobalt (II)porphyrin. J Am Chem Soc 95:1150–1153. https://doi.org/10.1021/ja00785a025

    Article  CAS  PubMed  Google Scholar 

  58. Kuroda Y, Kawashima A, Hayashi Y, Ogoshi H (1997) Self-organized porphyrin dimer as a highly specific receptor for pyrazine derivatives. J Am Chem Soc 119:4929–4933. https://doi.org/10.1021/ja963764g

    Article  CAS  Google Scholar 

  59. Baker EW, Brookhart MS, Corwin AH (1964) Piperidinate complexes of nickel and copper mesoporphyrin IX. J Am Chem Soc 86:4587–4590. https://doi.org/10.1021/ja01075a014

    Article  CAS  Google Scholar 

  60. Huang CY (1982) Determination of binding stoichiometry by the continuous variation method: The job plot. Methods Enzymol 87:509–523. https://doi.org/10.1016/S0076-6879(82)87029-8

    Article  CAS  PubMed  Google Scholar 

  61. Renny JS, Tomasevich LL, Tallmadge EH, Collum DB (2013) Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry. Angew Chem 52:11998–12013. https://doi.org/10.1002/anie.201304157

    Article  CAS  Google Scholar 

  62. Becker W (2005) Advanced time-correlated single photon counting techniques. Springer, New York

    Book  Google Scholar 

  63. Becker W (2008) The bh TCSPC handbook, 8th edn. Becker & Hickl Gmbh, Berlin

    Google Scholar 

  64. Chen C, Zhang L, Yang M, Tao C, Han Z, Chen B, Zeng H (2017) Size and distance dependent fluorescence enhancement of nanoporous gold. Optics Express 25:9901–9910. https://doi.org/10.1364/OE.25.009901

    Article  CAS  PubMed  Google Scholar 

  65. Xu H, Liu L, Teng F, Lu N (2019) Emission enhancement of fluorescent molecules by antireflective arrays. Research 2019:1–8. https://doi.org/10.34133/2019/3495841

    Article  CAS  Google Scholar 

  66. Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70:3898–3905. https://doi.org/10.1021/ac9712310

    Article  CAS  PubMed  Google Scholar 

  67. Menon S, Vikraman AE, Jagan JS, Girish Kumar K (2016) Turn on fluorescent determination of nitrite using green synthesized carbon nanoparticles. J Fluoresc 26:129–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to University Grants Commission-Basic Science Research, India and Cochin University of Science and Technology, India for funding. The authors also express their gratitude to Sophisticated Tests and Instrumentation Centre of Cochin University of Science and Technology for analysis.

Availability of Data

All data generated or analysed during this study are included in this published article. If any more data is required to support the findings of this study, they are available on request from the corresponding author (Leena Rajith).

Funding

This work was supported by.

1. University Grants Commission-Basic Science Research, India (No.F.30–463/2019(BSR).

2. Cochin University of Science and Technology, India (No.PL.(UGC)1/SPG/SMNRI/2018–2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Rajith.

Ethics declarations

Ethics Approval

NA

Consent to Participate

NA

Consent for Publication

NA

Code Availability

NA

Financial Interest

Shijo Francis has received financial assistance in the form of research fellowship from Cochin University of Science and Technology, India.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, S., Rajith, L. Selective Fluorescent Sensing of Adenine Via the Emissive Enhancement of a Simple Cobalt Porphyrin. J Fluoresc 31, 577–586 (2021). https://doi.org/10.1007/s10895-021-02685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02685-5

Keywords

Navigation