Skip to main content
Log in

Experimental studies on ablation characteristics of alumina after irradiation with a 193-nm ArF excimer laser

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Laser ablation of alumina ceramics was performed in the ambient air using a 193-nm ArF excimer laser. The effect of the laser parameters (pulse repetition frequency, laser spot diameter, fluence, and the number of laser pulses) on the ablation behavior was investigated. Scanning electron microscopy, optical microscopy, Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS) were used to assess the crater morphology, ablation depth, and changes in the structure and chemical composition of the ablated material. There was no significant difference in the ablation rate between craters produced at a pulse repetition frequency of 10 and 100 Hz using a number of laser pulses up to 500. Increasing pulse repetition frequency to 300 Hz slightly reduced the ablation rate of the craters produced using > 150 laser pulses. The ablation rate was found to decrease from pulse to pulse at high fluence and was higher for small (25 µm) than for large (110 µm) laser spot diameters. The Raman and EDS spectra, collected at and near the ablated craters, were similar to those collected at pristine non-ablated areas, indicated no changes in the structure and chemical composition of alumina due to ablation. Ablation threshold fluence was calculated from the relationship between ablation rate and fluence for craters produced using 60 laser pulses and was found to be 1.35 J/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Yan, High-Quality Laser Machining of Alumina Ceramics (The University of Manchester, UK, 2012)

    Google Scholar 

  2. H.D. Vora, S. Santhanakrishnan, S.P. Harimkar, S.K.S. Boetcher, N.B. Dahotre, J. Eur. Ceram. Soc. 32, 4205 (2012)

    Article  Google Scholar 

  3. F. Preusch, B. Adelmann, R. Hellmann, Micromachines 5, 1051 (2014)

    Article  Google Scholar 

  4. S.H. Kim, I.-B. Sohn, S. Jeong, Appl. Surf. Sci. 255, 9717 (2009)

    Article  ADS  Google Scholar 

  5. V. Oliveira, R. Vilar, O. Conde, Appl. Surf. Sci. 127–129, 831 (1998)

    Article  ADS  Google Scholar 

  6. Q. Wen, H. Wang, G. Cheng, F. Jiang, J. Lu, X. Xu, Opt. Lasers Eng. 128, 106007 (2020)

    Article  Google Scholar 

  7. R.N. Oosterbeek, T. Ward, S. Ashforth, O. Bodley, A.E. Rodda, M.C. Simpson, Opt. Lasers Eng. 84, 105 (2016)

    Article  Google Scholar 

  8. A. Žemaitis, M. Gaidys, P. Gečys, G. Račiukaitis, M. Gedvilas, Opt. Lasers Eng. 114, 83 (2019)

    Article  Google Scholar 

  9. Q. Li, L. Yang, C. Hou, O. Adeyemi, C. Chen, Y. Wang, Opt. Lasers Eng. 114, 22 (2019)

    Article  Google Scholar 

  10. M. Jelani, S. Bashir, M. Akram, D. Yousaf, N. Afzal, S. Ahmad, Phys. Scr. 89, 025703 (2014)

    Article  ADS  Google Scholar 

  11. M. Akram, S. Bashir, A. Hayat, K. Mahmood, R. Ahmad, M. Khaleeq-U-Rahaman, Laser Part. Beams 32, 119 (2014)

    Article  ADS  Google Scholar 

  12. S. Loganathan, S. Santhanakrishnan, R. Bathe, M. Arunachalam, Lasers Surg. Med. 1 (2019)

  13. S. Razi, F. Ghasemi, Eur. Phys. J. Plus 133, 1 (2018)

    Article  Google Scholar 

  14. A. Gurizzan, P. Villoresi, Eur. Phys. J. Plus 130, (2015)

  15. S. Razi, M. Mollabashi, K. Madanipour, Eur. Phys. J. Plus 130, 1 (2015)

    Article  Google Scholar 

  16. M.S. Brown, C.B. Arnold, in Laser Precis. Microfabr., edited by K. Sugioka, M. Meunier, A. Piqué (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010), pp. 91–120.

  17. W. Zhao, W. Wang, X. Mei, G. Jiang, B. Liu, Opt. Laser Technol. 58, 94 (2014)

    Article  ADS  Google Scholar 

  18. M.M. ElFaham, M. Okil, A.M. Mostafa, J. Appl. Phys. 128, 153104 (2020)

    Article  ADS  Google Scholar 

  19. M.M. ElFaham, M. Okil, A.M. Mostafa, J. Opt. Soc. Am. B 37, 2620 (2020)

    Article  ADS  Google Scholar 

  20. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Laser Phys. 24, 116001 (2014)

    Article  ADS  Google Scholar 

  21. K.L. Mittal, W.-S. Lei (eds.), Laser Technology: Application in Adhesion and Related Areas (Scrivener Publishing LLC, Hoboken, 2018)

    Google Scholar 

  22. A. Sharma, V. Yadava, Opt. Laser Technol. 98, 264 (2018)

    Article  ADS  Google Scholar 

  23. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, J. Appl. Phys. 113, 213106 (2013)

    Article  ADS  Google Scholar 

  24. X. Liu, D. Du, G. Mourou, IEEE J. Quantum Electron. 33, 1706 (1997)

    Article  ADS  Google Scholar 

  25. G.N.K. Kalli, K. Sugde, in Front. Guid. Wave Opt. Optoelectron., edited by B. Pal (InTech, 2010)

  26. A. Miotello, P.M. Ossi (eds.), Laser-Surface Interactions for New Materials Production (Springer-Verlag, Berlin, 2010)

    Google Scholar 

  27. A.P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, A.J. Hunt, Proc. Natl. Acad. Sci. U. S. A. 101, 5856 (2004)

    Article  ADS  Google Scholar 

  28. N. Base, Application of Particle and Laser Beams in Materials Technology (Springer, Dordrecht, 1995)

    Google Scholar 

  29. X. Yu, Q. Bian, B. Zhao, Z. Chang, P.B. Corkum, S. Lei, Appl. Phys. Lett. 102, 101111 (2013)

    Article  ADS  Google Scholar 

  30. K.-H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, M. Schmidt, Phys. Procedia 12, 230 (2011)

    Article  ADS  Google Scholar 

  31. M.R.H. Knowles, G. Rutterford, D. Karnakis, A. Ferguson, Int. J. Adv. Manuf. Technol. 33, 95 (2007)

    Article  Google Scholar 

  32. L. Rihakova, H. Chmelickova, Adv. Mater. Sci. Eng. 2015, 1 (2015)

    Article  Google Scholar 

  33. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Laser Phys. 24, 106102 (2014)

    Article  ADS  Google Scholar 

  34. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, J. Appl. Phys. 114, 083110 (2013)

    Article  ADS  Google Scholar 

  35. M.E. Shaheen, B.J. Fryer, Laser Part. Beams 30, 473 (2012)

    Article  ADS  Google Scholar 

  36. P.E. Dyer, J. Sidhu, J. Appl. Phys. 57, 1420 (1985)

    Article  ADS  Google Scholar 

  37. S. Marimuthu, A.M. Kamara, M.F. Rajemi, D. Whitehead, P. Mativenga, L. Li, in Laser Technol. ed. by K.L. Mittal, W.-S. Lei (John Wiley & Sons Inc, Hoboken, 2018), pp. 325–377

    Chapter  Google Scholar 

  38. J. Lawrence, L. Li, Opt. Laser Technol. 32, 30 (2000)

    Article  Google Scholar 

  39. J.E. Andrew, P.E. Dyer, D. Forster, P.H. Key, Appl. Phys. Lett. 43, 717 (1983)

    Article  ADS  Google Scholar 

  40. M.J.J. Schmidt, L. Li, J.T. Spencer, J. Mater. Process. Technol. 114, 139 (2001)

    Article  Google Scholar 

  41. J.C. Ion, Laser Processing of Engineering Materials (Elsevier Butterworth Heinemann, Linacre House, Jordan Hill, Oxford, 2005)

    Google Scholar 

  42. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998)

    Google Scholar 

  43. M. Stafe, A. Marcu, N.N. Puscas, Pulsed Laser Ablation of Solids (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2014)

    Book  Google Scholar 

  44. D. Basting, G. Marowsky (eds.), Excimer Laser Technology (Springer, Berlin, 2005)

    Google Scholar 

  45. J.-P. Desbiens, P. Masson, Sensors Actuators A Phys. 136, 554 (2007)

    Article  Google Scholar 

  46. D. Sola, J.I. Peña, Materials (Basel). 6, 5302 (2013)

    Article  ADS  Google Scholar 

  47. D. Zhao, N. Gierse, J. Oelmann, S. Brezinsek, M. Rasinski, Y. Liang, C. Linsmeier, H. Ding, Fusion Eng. Des. 151, 111379 (2020)

    Article  Google Scholar 

  48. S. Sinha, Ceram. Int. 41, 6596 (2015)

    Article  Google Scholar 

  49. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Laser Phys. 26, 116102 (2016)

    Article  ADS  Google Scholar 

  50. M. Chaja, T. Kramer, B. Neuenschwander, Procedia CIRP 74, 300 (2018)

    Article  Google Scholar 

  51. B. Wolff-Rottke, J. Ihlemann, H. Schmidt, A. Scholl, Appl. Phys. A Mater. Sci. Process. 60, 13 (1995)

    Article  ADS  Google Scholar 

  52. M. Eyett, D. Bäuerle, Appl. Phys. Lett. 51, 2054 (1987)

    Article  ADS  Google Scholar 

  53. F. Brandi, N. Burdet, R. Carzino, A. Diaspro, Opt. Express 18, 23488 (2010)

    Article  ADS  Google Scholar 

  54. O. Armbruster, A. Naghilou, M. Kitzler, W. Kautek, Appl. Surf. Sci. 396, 1736 (2017)

    Article  ADS  Google Scholar 

  55. I. Vlǎdoiu, M. Stafe, I.M. Popescu, U.P.B. Sci, Bull. Ser. A Appl. Math. Phys. 69, 81 (2007)

    Google Scholar 

  56. M. Stafe, I. Vlädoiu, C. Negutu, I.M. Popescu, Rom. Reports Phys. 60, 789 (2008)

    Google Scholar 

  57. T. Beuermann, H.J. Brinkmann, T. Damm, M. Stuke, in MRS Symp. Proc (1990), pp. 37–42.

  58. M.J.J. Schmidt, L. Li, J.T. Spencer, Appl. Surf. Sci. 154, 53 (2000)

    Article  ADS  Google Scholar 

  59. F.C. Burns, S.R. Cain, J. Phys. D. Appl. Phys. 29, 1349 (1996)

    Article  ADS  Google Scholar 

  60. E.K. Illy, D.J.W. Brown, M.J. Withford, J.A. Piper, IEEE, , J. Sel. Top. Quantum Electron. 5, 1543 (1999)

    Article  Google Scholar 

  61. Z.Q. Liu, Y. Feng, X.-S. Yi, Appl. Surf. Sci. 165, 303 (2000)

    Article  ADS  Google Scholar 

  62. W. Hu, Y.C. Shin, G.B. King, J. Manuf. Sci. Eng. 132, 011009 (2010)

    Article  Google Scholar 

  63. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Laser Phys. Lett. 12, 066103 (2015)

    Article  ADS  Google Scholar 

  64. S. Arba-Mosquera, T. Klinner, J. Cataract Refract. Surg. 40, 477 (2014)

    Article  Google Scholar 

  65. M. Mrochen, C. Wuellner, K. Rose, C. Donitzky, J. Cataract Refract. Surg. 35, 1806 (2009)

    Article  Google Scholar 

  66. J. Cheng, W. Perrie, S.P. Edwardson, E. Fearon, G. Dearden, K.G. Watkins, Appl. Surf. Sci. 256, 1514 (2009)

    Article  ADS  Google Scholar 

  67. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Opt. Lasers Eng. 119, 18 (2019)

    Article  Google Scholar 

  68. K. Kim, J. Park, M. Bae, C. Lim, in Proc. Acad. World Int. Conf. (2017), pp. 1–5.

  69. H.A.O. Wang, D. Grolimund, C. Giesen, C.N. Borca, J.R.H. Shaw-Stewart, B. Bodenmiller, D. Günther, Anal. Chem. 85, 10107 (2013)

    Article  Google Scholar 

  70. B. Wu, L. Deng, P. Liu, F. Zhang, J. Duan, X. Zeng, Appl. Surf. Sci. 409, 403 (2017)

    Article  ADS  Google Scholar 

  71. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Laser Part. Beams 37, 101 (2019)

    Article  ADS  Google Scholar 

  72. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Spectrochim. Acta Part B At. Spectrosc. 107, 97 (2015)

    Article  ADS  Google Scholar 

  73. J. Long, C. Zhou, Z. Cao, X. Xie, W. Hu, Opt. Laser Technol. 109, 61 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NSERC Discovery Grants to BJF and JEG and CFI Innovation and Infrastructure Grants. The authors would like to thank Sharon Lackie for her help during SEM measurements

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Shaheen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, M.E., Gagnon, J.E. & Fryer, B.J. Experimental studies on ablation characteristics of alumina after irradiation with a 193-nm ArF excimer laser. Eur. Phys. J. Plus 136, 119 (2021). https://doi.org/10.1140/epjp/s13360-021-01132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01132-5

Navigation