Skip to main content
Log in

The effect of quantum correction for the dielectric function on the optical properties of a plasmon–exciton–plasmon hybrid system

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, the optical properties of two small silver metallic nanoparticles (sAgNPs) coupled to a quantum dot (QD) are studied. The interaction between sAgNP and QD is investigated theoretically using the compact density matrix method. In this paper, due to the small size of the AgNP, the dielectric function does not follow the classical models and quantum-size effects must be considered. The excitation of surface plasmons in sAgNP is observed using the finite element method. The main result of the current study shows that when AgNPs are small, the absorption spectrum profile of the QD is strongly affected due to the plasmon–exciton–plasmon interaction. The absorption spectrum profile of the QD shows an electromagnetically induced transparency with two peaks and a minimum in the transition frequency. Then, the near-field enhancement of the sAgNP, the field experienced by the QD, the exciton transition energy shift, and the Förster-enhanced broadening of the excitonic transition are also examined.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available within the article.]

References

  1. P. Harrison, A. Valavanis, Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures (John Wiley & Sons, New York, 2016)

    Book  Google Scholar 

  2. W. Kirk, Nanostructures and mesoscopic systems (Academic Press, Singapore, 2012)

    Google Scholar 

  3. T. Tsakalakos, I.A. Ovid’ko, A.K. Vasudevan, Nanostructures: synthesis, functional properties and application, vol. 128 (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  4. E. Cao, W. Lin, M. Sun, W. Liang, Y. Song, Nanophotonics 7(1), 145 (2018)

    Article  Google Scholar 

  5. V.V. Savchuk, R.V. Gamernyk, I.S. Virt, S.Z. Malynych, A.O. Pinchuk, AIP Adv. 9(4), 045021 (2019)

    Article  ADS  Google Scholar 

  6. A.R. Warrier, R. Gandhimathi, Methods Appl Fluoresc 6(3), 035009 (2018)

    Article  ADS  Google Scholar 

  7. R.M. Pereira, J. Borges, G.V. Smirnov, F. Vaz, M.I. Vasilevskiy, ACS Photonics 6(1), 204 (2018)

    Article  Google Scholar 

  8. N. Zamani, A. Keshavarz, H. Nadgaran, Superlattices Microstruct. 77, 82 (2015)

    Article  ADS  Google Scholar 

  9. S.A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, Berlin, 2007)

    Book  Google Scholar 

  10. M.R. Singh, D.G. Schindel, A. Hatef, Appl. Phys. Lett. 99(18), 181106 (2011)

    Article  ADS  Google Scholar 

  11. R.D. Artuso, G.W. Bryant, Nano lett. 8(7), 2106 (2008)

    Article  ADS  Google Scholar 

  12. N. Zamani, A. Keshavarz, H. Nadgaran, Physica B: Condensed Matter 490, 57 (2016)

    Article  ADS  Google Scholar 

  13. N. Zamani, A. Keshavarz, H. Nadgaran, Eur. Phys. J. D 74(6), 1 (2020)

    Article  Google Scholar 

  14. A. Hatef, S.M. Sadeghi, M.R. Singh, Nanotechnology 23(6), 065701 (2012)

    Article  ADS  Google Scholar 

  15. J.B. Li, S. Liang, S. Xiao, M.D. He, N.C. Kim, L.Q. Chen, G.H. Wu, Y.X. Peng, X.Y. Luo, Z.P. Guo, Optics Express 24(3), 2360 (2016)

    Article  ADS  Google Scholar 

  16. N. Zamani, A. Hatef, H. Nadgaran, A. Keshavarz, J. Nanophotonics 11(3), 036011 (2017)

    ADS  Google Scholar 

  17. H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lerme, P. Maioli, M. Pellarin, M. Broyer et al., Nano Lett. 9(10), 3463 (2009)

    Article  ADS  Google Scholar 

  18. V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J.P. Hill, K. Ariga, J. Phys. Chem. C 116(4), 2683 (2012)

    Article  Google Scholar 

  19. J. Borges, R. Pereira, M. Rodrigues, T. Kubart, S. Kumar, K. Leifer, A. Cavaleiro, T. Polcar, M. Vasilevskiy, F. Vaz, J. Phys. Chem. C 120(30), 16931 (2016)

    Article  Google Scholar 

  20. L. Genzel, T. Martin, U. Kreibig, Z. Phys. B Condensed Matter 21(4), 339 (1975)

    ADS  Google Scholar 

  21. X. Jiang, K. Guo, G. Liu, T. Yang, Y. Yang, Superlattices Microstruct. 105, 56 (2017)

    Article  ADS  Google Scholar 

  22. J.A. Scholl, A.L. Koh, J.A. Dionne, Nature 483(7390), 421 (2012)

    Article  ADS  Google Scholar 

  23. C. Kumarasinghe, M. Premaratne, G.P. Agrawal, Optics Exp. 22(10), 11966 (2014)

    Article  ADS  Google Scholar 

  24. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, New York, 2008)

    Google Scholar 

  25. U. Kreibig, L. Genzel, Surface Sci. 156, 678 (1985)

    Article  ADS  Google Scholar 

  26. W. Kraus, G.C. Schatz, J. Chem. Phys. 79(12), 6130 (1983)

    Article  ADS  Google Scholar 

  27. M.C. Ko, N.C. Kim, C.J. Jang, G.J. Kim, Z.H. Hao, J.B. Li, Q.Q. Wang, arXiv preprint arXiv:1708.06636 (2017)

  28. A. Hatef, N. Zamani, W. Johnston, J. Phys.: Condensed Matter 29(15), 155305 (2017)

    ADS  Google Scholar 

  29. R.D. Artuso, G.W. Bryant, Phys. Rev. B 82(19), 195419 (2010)

    Article  ADS  Google Scholar 

  30. L.W. Wang, A. Zunger, J. Phys. Chem. B 102(34), 6449 (1998)

    Article  Google Scholar 

  31. A. Hatef, S.M. Sadeghi, É. Boulais, M. Meunier, Nanotechnology 24(1), 015502 (2012)

    Article  ADS  Google Scholar 

  32. P.B. Johnson, R.W. Christy, Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the interpretation of the results and the manuscript.

Corresponding authors

Correspondence to N. Zamani or H. Nadgaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, N., Nadgaran, H. & Hatef, A. The effect of quantum correction for the dielectric function on the optical properties of a plasmon–exciton–plasmon hybrid system. Eur. Phys. J. D 75, 33 (2021). https://doi.org/10.1140/epjd/s10053-021-00053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00053-3

Navigation