Skip to main content
Log in

Investigation of Influence of SiN and SiO2 Passivation in Gate Field Plate Double Heterojunction Al0.3Ga0.7N/GaN/Al0.04Ga0.96N High Electron Mobility Transistors

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This research article reports the operational characteristics of gate field plate double heterojunction (DH) high electron mobility transistors (HEMTs) using SiN (SiO2) passivation techniques. The proposed HEMT exhibits 496 (292) V breakdown voltage (VBR) for LG (gate-length) = 0.25 μm, LGD (drain-gate distance) = 3.2 μm and 1 μm field plate length HEMT. The n + GaN source/drain regions with SiN (SiO2) passivation AlGaN/GaN/AlGaN HEMT delivered 1.4 (1.3) A/mm peak drain current density (Ids), 540 (550) mS/mm gm (transconductance), fT/fMAX of 54/198 (62/252) GHz, and the sub-threshold drain leakage current of 4 × 10−13 (1 × 10−11) A/mm. The high Johnson figure of merit (JFoM = fT × VBR) of 28.76 (19.27) THz.V and excellent VBR × fMAX product of 90.27 (73.29) THz.V demonstrates the great potential of the optimized gate field plate DH-HEMTs structure for U and V band high power microwave electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ikeda N, Niiyama Y, Kambayashi H, Sato Y, Nomura T, Kato S, Yoshida S (2010) GaN power transistors on Si substrates for switching applications. Proc IEEE 98:1151–1161

    Article  CAS  Google Scholar 

  2. Moon JS, Wu S, Milosavljevic I, Conway A, Hashomoto P, Hu M, Antcliffe M, Micovicv M (2005) Gate-recessed AlGaN-GaN HEMTs for high-performance millimeter-wave applications. IEEE Electron Device Lett. 26:348–350

    Article  CAS  Google Scholar 

  3. Palacios T, Charkraborty A, Rajan S, Poblenz C, Keller S, DenBaars SP, Speck JS, Mishra UK (2005) High-power AlGaN/GaN HEMTs for Ka-band applications. IEEE Electron Device Lett. 26:781–783

    Article  CAS  Google Scholar 

  4. Chu KK, Chao PC, Pizzella MT, Actis R, Meharry DE, Nichols KB, Vaudo RP, Xu X, Flynn JS, Dion J, Brandes GR (2004) 9.4 W/mm power density AlGaN-GaN HEMTs on free-standing GaN substrates. IEEE Electron Device Lett. 25:596–598

    Article  CAS  Google Scholar 

  5. Vetury R, Zhang N, Keller S, Mishra U (2001) The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans Electron Devices 48:560–566

    Article  CAS  Google Scholar 

  6. Huang H, Liang YC, Samudra GS, Chang T-F, Huang C-F (2014) Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs. IEEE Trans Power Electronics 29:2164–2173

    Article  Google Scholar 

  7. Brown DF, Shinohara K, Corrion AL, Chu R, Williams A, Wong JC, Alvarado-Rodriguez I, Grabar R, Johnson M, Butler CM, Santos D, Burnham SD, Robinson JF, Zehnder D, Kim SJ, Oh TC, Micovic M (2013) High-speed, enhancement-mode GaN power switch with regrown n+ GaN ohmic contacts and staircase field plates. IEEE Electron Device Lett. 34:1118–1120

    Article  CAS  Google Scholar 

  8. Wu Y-F, Moore M, Saxler A, Wisleder T, Parikh P (2006) 40-W/mm double field-plated GaN HEMTs. in Proc IEEE Device Res Conf:151–152

  9. Wakejima A, Ota K, Matsunaga K, Kuzuhara M (2003) A GaAs-based field-modulating plate HFET with improved WCDMA peak-output-power characteristics. IEEE Trans Electron Devices 50:1983–1987

    Article  CAS  Google Scholar 

  10. Pei Y, Chen Z, Brown D, Keller S, Denbaars SP, Mishra UK (2009) Deep-submicrometer AlGaN/GaN HEMTs with slant field plates. IEEE Electron Device Lett. 30:328–330

    Article  CAS  Google Scholar 

  11. Coffie R (2014) Slant field plate model for field-effect transistors. IEEE Trans Electron Devices 61:2867–2872

    Article  CAS  Google Scholar 

  12. Hao Y, Yang L, Ma X, Ma J, Cao M, Pan C, Wang C, Zhang J (2011) High-performance microwave gate-recessed AlGaN/AlN/GaN MOS-HEMT with 73% power-added efficiency. IEEE Electron Device Lett 32:626–628

    Article  CAS  Google Scholar 

  13. Saito W, Nitta T, Kakiuchi Y, Saito Y, Tsuda K, Omura I, Yamaguchi M (2007) Suppression of dynamic ON-resistance increase and gate charge measurements in high-voltage GaN-HEMTs with optimized field-plate structure. IEEE Trans Electron Devices 54:1825–1830

    Article  CAS  Google Scholar 

  14. Nidhi T, Palacios A, Chakraborty SK, Mishra UK (2006) Study of impact of access resistance on high-frequency performance of GaN HEMTs by measurements at low temperature. IEEE Electron Device Lett 27:877–880

    Article  CAS  Google Scholar 

  15. Tasker PJ, Hughes B (1989) Importance of source and drain resistance to the maximum ft of millimeter-wave MODFETs. IEEE Electron Device Lett. 10:291–293

    Article  Google Scholar 

  16. Bolognesi CR, Kwan AC, DiSanto DW (2002) Transistor delay analysis and effective channel velocity extraction in GaN HFETs. IEDM Tech Dig 4:685–688

    Google Scholar 

  17. Hanawa H, Horio K (2014) Increase in breakdown voltage of AlGaN/GaN HEMTs with a high-k dielectric layer. Phys Status Solidi A 211:784–787

    Article  CAS  Google Scholar 

  18. Liu C, Chor EF, Tan LS (2007) Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high-k dielectric for surface passivation and gate oxide. Semicond Sci Technol 22:522–527

    Article  CAS  Google Scholar 

  19. Micovic M, Hashimoto P, Hu M, Milosavljevic I, Duvall J, Willadsen PJ, Wong W-S, Conway AM, Kurdoghlian A, Deelman PW, Moon J-S, Schmitz A, Delaney MJ (2004) GaN double heterojunction field effect transistor for microwave and millimeterwave power applications. IEDM Tech Dig 4:807–810

    Google Scholar 

  20. ATLAS User’s Manual, Device simulation software, (2009) SILVACO Int., Santa Clara, CA,

  21. Chini A, Buttari D, Coffie R, Shen L, Heikman S, Chakraborty A, Keller S, Mishra UK (2004) Power and linearity characteristics of field-plated recessed-gate AlGaN–GaN HEMTs. IEEE Electron Device Lett 25:229–231

    Article  CAS  Google Scholar 

  22. Moon JS, Wong D, Hu M, Hashimoto P, Antcliffe M, McGuire C, Micovic M, Willadson P (2008) 55% PAE and high power Ka-band GaN HEMTs with linearized Transconductance via n+ GaN source contact ledge. IEEE Electron Device Lett 29:834–837

    Article  CAS  Google Scholar 

  23. Marti D, Tirelli S, Alt AR, Roberts J, Bolognesi CR (2012) 150-GHz cutoff frequencies and 2-W/mm output power at 40 GHz in a millimeter-wave AlGaN/GaN HEMT technology on silicon. IEEE Electron Device Lett 33:1372–1374

    Article  CAS  Google Scholar 

  24. Song D, Liu J, Cheng Z, Tang WCW, Lau KM, Chen KJ (2007) Normally off AlGaN/GaN low-density drain HEMT (LDD-HEMT) with enhanced breakdown voltage and reduced current collapse. IEEE Electron Device Lett 28:189–191

    Article  CAS  Google Scholar 

  25. Wong J, Shinohara K, Corrion AL, Brown DF, Carlos Z, Williams A, Tang Y, Robinson JF, Khalaf I, Fung H, Schmitz A, Thomas O, Kim S, Chen S, Burnham S, Margomenos A, Micovic M (2017) Novel asymmetric slant field plate Technology for High-Speed low-Dynamic Ron E/D-mode GaN HEMTs. IEEE Electron Device Lett 38:95–98

    Article  CAS  Google Scholar 

  26. Xie G, Xu E, Lee J, Hashemi N, Zhang B, Fu FY, Ng WT (2012) Breakdown-voltage-enhancement technique for RF-based AlGaN/GaN HEMTs with a source-connected air-bridge field plate. IEEE Electron Device Lett 33:670–672

    Article  CAS  Google Scholar 

  27. Fletcher A, Nirmal D, Ajayan J, Arivazhagan L (2019) Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications. Int J Electron Commun 99:325–330

    Article  Google Scholar 

  28. Augustine Fletcher AS, Nirmal D, Arivazhagan L, Ajayan J, Varghese A (2019) Enhancement of Johnson figure of merit in III-V HEMT combined with discrete field plate and AlGaN blocking layer. Int J RF Microw Comput Aided Eng 30:e22040

    Google Scholar 

  29. Chandera S, Guptaa S, Ajayb MG (2018) Enhancement of breakdown voltage in algan/gan hemt using passivation technique for microwave application. Superlattices and Microstructures 120:217–222

    Article  Google Scholar 

  30. Subramani NK, Julien C, Ahmad A, Jean C, Raphael S, Raymond Q (2017) Identification of GaN buffer traps in microwave power AlGaN/GaN HEMTs through low frequency S parameters measurements and TCAD-based physical device simulations. J Elect Dev Soc 5:12–18

    Google Scholar 

  31. Adachi S (2008) Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors. Wiley, Chichester

    Google Scholar 

  32. Giovanni C, Dongping X, Schreurs DM, Multibias A (2006) Equivalent-circuit extraction for GaN HEMTs. IEEE Trans Microwave Theory Tech 54:3616–3622

    Article  Google Scholar 

  33. Kawada Y, Hanawa H, Horio K (2017) Effects of acceptors in a Fe-doped buffer layer on breakdown characteristics of AlGaN/GaN high electron mobility transistors with a high-k passivation layer. Jpn J Appl Phys 108003:1–3

    Google Scholar 

  34. Satoh Y, Hanawa H, Horio K (2016) Effects of buffer leakage current on breakdown voltage in AlGaN/GaN HEMTs with a high-k passivation layer, 2016 11th European Microwave Integrated Circuits Conference (EuMIC), London, 341-344,

  35. Kabemura T, Ueda S, Kawada Y, Horio K (2018) Enhancement of breakdown voltage in AlGaN/GaN HEMTs: field plate plus high- k passivation layer and high acceptor density in buffer layer, in. IEEE Transactions on Electron Devices 65:3848–3854

    Article  CAS  Google Scholar 

  36. Karmalkar S, Mishra UK (2001) Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate. in IEEE Transactions on Electron Devices 48:1515–1521

    Article  CAS  Google Scholar 

  37. Brown DF (2013) High-speed, enhancement-mode GaN power switch with regrown n+ GaN Ohmic contacts and staircase field plates. IEEE Electron Device Letters 4:1118–1120

    Article  Google Scholar 

  38. Saito W, Suwa T, Uchihara T, Naka T, Kobayashi T (2015) Breakdown behaviour of high-voltage GaN-HEMTs. Microelect Real 55:1682–1686

    Article  CAS  Google Scholar 

  39. Meneghesso G, Meneghini M, Zanoni E (2014) Breakdown mechanisms in AlGaN/GaN HEMTs: an overview. Japan J App Phy 53:1–9

    Google Scholar 

  40. Binola K, Shobha R, Prajoon P, Mohankumar N, Nirmal D (2015) The influence of high-k passivation layer on breakdown voltage of schottky AlGaN/GaN HEMTs. J Microelectron 46:1387–1391

    Article  Google Scholar 

  41. Toshiki K, Shingo U, Yuki K, Kazushige H (2018) Enhancement of breakdown voltage in AlGaN/GaN HEMTs: field plate plus high-k passivation layer and high acceptor density in buffer layer. IEEE Trans Elect Dev 65:9–14

    Google Scholar 

  42. Fletcher ASA, Nirmal D, Ajayan J, Arivazhagan L (2020) An intensive study on assorted substrates suitable for high JFOM AlGaN/GaN HEMT. Silicon. https://doi.org/10.1007/s12633-020-00549-4

  43. Soni A, Ajay, Shrivastava M (2020) Novel drain-connected field plate GaN HEMT designs for improved VBD−RON tradeoff and RF PA performance. IEEE Transactions on Electron Devices 67(4):1718–1725. https://doi.org/10.1109/TED.2020.2976636

    Article  Google Scholar 

  44. Prasannanjaneyulu B, Karmalkar S (2020) Relative effectiveness of high-k passivation and gate-connected field plate techniques in enhancing GaN HEMT breakdown. Microelectron Reliab 110:113698. https://doi.org/10.1016/j.microrel.2020.113698

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the works in this paper have done together by P. Murugapandiyan, D. Nirmal, J. Ajayan, Arathy Varghese and N. Ramkumar.

Corresponding author

Correspondence to D. Nirmal.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Conflict of Interest

The authors declare that there is no conflict of interest reported in this paper.

Code Availability

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable as the manuscript does not contain any data from individual.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugapandiyan, P., Nirmal, D., Ajayan, J. et al. Investigation of Influence of SiN and SiO2 Passivation in Gate Field Plate Double Heterojunction Al0.3Ga0.7N/GaN/Al0.04Ga0.96N High Electron Mobility Transistors. Silicon 14, 1421–1429 (2022). https://doi.org/10.1007/s12633-020-00899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00899-z

Keywords

Navigation