Skip to main content
Log in

The Origin of Activation of Non-basal Slip in Mg-Ce Dilute Alloy: An Atomistic Simulation Study

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mg-Ce alloys have been attracting attention because a small amount of Ce addition improves the ductility of Mg at room temperature. When Ce is added, non-basal slip related to improved ductility has been observed. However, the mechanism for activating non-basal slip by Ce has not been understood. In this study, the effect of Ce on slip behavior in Mg is investigated using a molecular dynamics simulation and interatomic potentials for pure Ce and Mg-Ce binary systems have been developed based on the second nearest-neighbor modified embedded-atom method formalism for molecular dynamics simulations. It is found that a small amount of Ce addition has little effect on the critical resolved shear stress (CRSS) of the pyramidal II slip, but significantly increases the CRSS of the basal and prismatic slip. Consequently, it reduces the CRSS anisotropy among slip systems and activates the non-basal slip. This study suggests that reduced CRSS anisotropy due to the difference in the solute-dislocation binding tendency among slip systems can be the reason for the non-basal slip activation, providing a guideline for Mg alloy design to improve the alloy’s ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Romanowski: Magnes. Technol. 2019, 2019, pp. 3–12.

    Google Scholar 

  2. A. Dziubińska, A. Gontarz, M. Dziubiński, and M. Barszcz: Adv. Sci. Technol. Res. J., 2016, vol. 10, pp. 158–68.

    Article  Google Scholar 

  3. R.K. Mishra, A.K. Gupta, P.R. Rao, A.K. Sachdev, A.M. Kumar, and A.A. Luo: Scr. Mater., 2008, vol. 59, pp. 562–5.

    Article  CAS  Google Scholar 

  4. Y. Chino, M. Kado, and M. Mabuchi: Mater. Sci. Eng. A, 2008, vol. 494, pp. 343–9.

    Article  Google Scholar 

  5. Y. Chino, M. Kado, and M. Mabuchi: Acta Mater., 2008, vol. 56, pp. 387–94.

    Article  CAS  Google Scholar 

  6. M.H. Yoo: Metall. Trans. A, 1981, vol. 12, pp. 409–18.

    Article  CAS  Google Scholar 

  7. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.

    Article  CAS  Google Scholar 

  8. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi: Acta Mater., 2003, vol. 51, pp. 2055–65.

    Article  CAS  Google Scholar 

  9. S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, and D. Raabe: Acta Mater., 2012, vol. 60, pp. 3011–21.

    Article  Google Scholar 

  10. Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, and W.A. Curtin: Science, 2018, vol. 359, pp. 447–52.

    Article  CAS  Google Scholar 

  11. Z. Zeng, M. Bian, S. Xu, C.H.J. Davies, N. Birbilis, and J.-F. Nie: Magnes. Technol. 2017, 2017, pp. 521–4.

    Google Scholar 

  12. Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, and J.F. Nie: Mater. Sci. Eng. A, 2016, vol. 674, pp. 459–71.

    Article  CAS  Google Scholar 

  13. M. Bian, X. Huang, and Y. Chino: Mater. Sci. Eng. A, 2020, vol. 774, p. 138923.

    Article  CAS  Google Scholar 

  14. D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, and D.J. Srolovitz: Phys. Rev. B, 2006, vol. 73, pp. 1–12.

    Google Scholar 

  15. X.Y. Liu, J.B. Adams, F. Ercolessi, and J.A. Moriarty: Model. Simul. Mater. Sci. Eng., 1996, vol. 4, pp. 293–303.

    Article  CAS  Google Scholar 

  16. Y.-M. Kim, N.J. Kim, and B.-J. Lee: Calphad, 2009, vol. 33, pp. 650–7.

    Article  CAS  Google Scholar 

  17. Z. Wu, M.F. Francis, and W.A. Curtin: Model. Simul. Mater. Sci. Eng., 2015, vol. 23, p. 015004.

    Article  Google Scholar 

  18. M. Ghazisaeidi, L.G. Hector, and W.A. Curtin: Scr. Mater., 2014, vol. 75, pp. 42–5.

    Article  CAS  Google Scholar 

  19. K.-H. Kim, J.B. Jeon, and B.-J. Lee: Calphad, 2015, vol. 48, pp. 27–34.

    Article  CAS  Google Scholar 

  20. Y.-M. Kim, I.-H. Jung, and B.-J. Lee: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, p. 035005.

    Article  Google Scholar 

  21. K.-H. Kim and B.-J. Lee: Calphad, 2017, vol. 57, pp. 55–61.

    Article  CAS  Google Scholar 

  22. H.-S. Jang, K.-M. Kim, and B.-J. Lee: Calphad, 2018, vol. 60, pp. 200–7.

    Article  CAS  Google Scholar 

  23. K.-H. Kim, J.H. Hwang, H.-S. Jang, J.B. Jeon, N.J. Kim, and B.-J. Lee: Mater. Sci. Eng. A, 2018, vol. 715, pp. 266–75.

    Article  CAS  Google Scholar 

  24. B.-J. Lee and M.I. Baskes: Phys. Rev. B, 2000, vol. 62, pp. 8564–7.

    Article  CAS  Google Scholar 

  25. D.C. Koskimaki, K.A. Gschneidner, and N.T. Panousis: J. Cryst. Growth, 1974, vol. 22, pp. 225–9.

    Article  CAS  Google Scholar 

  26. K.A. Gschneidner and V.K. Pecharsky: J. Phase Equilibria, 1999, vol. 20, pp. 612–4.

    Article  CAS  Google Scholar 

  27. A. V Nikolaev and A. V Tsvyashchenko: Physics-Uspekhi, 2012, vol. 55, pp. 657–80.

    Article  CAS  Google Scholar 

  28. M.J. Lipp, Z. Jenei, H. Cynn, Y. Kono, C. Park, C. Kenney-Benson, and W.J. Evans: Nat. Commun., 2017, vol. 8, pp. 1–8.

    Article  CAS  Google Scholar 

  29. R.J.M. Konings and O. Beneš: J. Phys. Chem. Ref. Data, 2010, vol. 39, p. 043102.

    Article  Google Scholar 

  30. X. Zhang, D. Kevorkov, and M. Pekguleryuz: J. Alloys Compd., 2009, vol. 475, pp. 361–7.

    Article  CAS  Google Scholar 

  31. X. Zhang, D. Kevorkov, and M.O. Pekguleryuz: J. Alloys Compd., 2010, vol. 501, pp. 366–70.

    Article  CAS  Google Scholar 

  32. B.-J. Lee, J.-H. Shim, and M.I. Baskes: Phys. Rev. B, 2003, vol. 68, p. 144112.

    Article  Google Scholar 

  33. 33. S. Plimpton (1995) J. Comput. Phys. 117:1-19

    Article  CAS  Google Scholar 

  34. J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante: Phys. Rev. B, 1984, vol. 29, pp. 2963–9.

    Article  CAS  Google Scholar 

  35. C. Stassis, T. Gould, O.D. Mcmasters, K.A. Gschneidner, and R.M. Nicklow: Phys. Rev. B, 1979, vol. 19, pp. 5746–53.

    Article  CAS  Google Scholar 

  36. F. Decremps, D. Antonangeli, B. Amadon, and G. Schmerber: Phys. Rev. B, 2009, vol. 80, p. 132103.

    Article  Google Scholar 

  37. J.D. Greiner, O.D. McMasters, and J.F. Smith: Scr. Metall., 1980, vol. 14, pp. 989–91.

    Article  CAS  Google Scholar 

  38. M. Boidron and R. Paulin: Phys. Lett. A, 1979, vol. 73, pp. 200–2.

    Article  Google Scholar 

  39. M.P. Dariel, D. Dayan, and A. Languille: Phys. Rev. B, 1971, vol. 4, pp. 4348–54.

    Article  Google Scholar 

  40. K.A. Gschneidner, R.O. Elliott, and R.R. McDonald: J. Phys. Chem. Solids, 1962, vol. 23, pp. 555–66.

    Article  CAS  Google Scholar 

  41. F.H. Spedding, J.J. McKeown, and A.H. Daane: J. Phys. Chem., 1960, vol. 64, pp. 289–94.

    Article  CAS  Google Scholar 

  42. L. Huang and C.A. Chen: J. Phys. Condens. Matter, 2007, vol. 19, p. 476206.

    Article  Google Scholar 

  43. I. Lukačević, V. Mankad, S.K. Gupta, P.K. Jha, and D. Kirin: J. Phys. Conf. Ser., 2012, vol. 377, p. 012090.

    Article  Google Scholar 

  44. R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, and S.P. Ong: Sci. Data, 2016, vol. 3, p. 160080.

    Article  CAS  Google Scholar 

  45. A.T. Dinsdale: SGTE data for pure elements, version 4.5, https://thermophysics.ru/pdf_doc/SGTEdata.pdf.

  46. Y.F. Ouyang, B.W. Zhang, S.Z. Liao, and Z.P. Jin: Rare Met. Mater. Eng., 1995, vol. 24, pp. 32–7.

    CAS  Google Scholar 

  47. J.E. Pahlman and J.F. Smith: Metall. Trans., 1972, vol. 3, pp. 2423–32.

    Article  CAS  Google Scholar 

  48. J.R. Ogren, N.J. Magnani, and J.F. Smith: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 766–71.

    CAS  Google Scholar 

  49. F. Yang, J.-W. Wang, J.-L. Ke, Z.-G. Pan, and B.-Y. Tang: Phys. Status Solidi, 2011, vol. 248, pp. 2097–102.

    CAS  Google Scholar 

  50. X. Tao, Y. Ouyang, H. Liu, Y. Feng, Y. Du, Y. He, and Z. Jin: J. Alloys Compd., 2011, vol. 509, pp. 6899–907.

    Article  CAS  Google Scholar 

  51. Y. Wu and W. Hu: Eur. Phys. J. B, 2007, vol. 60, pp. 75–81.

    Article  CAS  Google Scholar 

  52. D.W. Zhou, P. Peng, and J.S. Liu: J. Alloys Compd., 2007, vol. 428, pp. 316–21.

    Article  CAS  Google Scholar 

  53. H. Zhang, Y. Wang, S. Shang, L.Q. Chen, and Z.K. Liu: J. Alloys Compd., 2008, vol. 463, pp. 294–301.

    Article  CAS  Google Scholar 

  54. S.G. Fries and T. Jantzen: Thermochim. Acta, 1998, vol. 314, pp. 23–33.

    Article  CAS  Google Scholar 

  55. 55. Z.Y. Qiao, Z.H. Xu, H.L. Liu: Computerized Physical Chemistry of Metallurgy and Materials. Metallurgy, Beijing, 1999, p 57

    Google Scholar 

  56. 56. P. Villars, L.D. Calvert (1985) Pearson’s Handbook of Crystallographic Data for Intermediate Phases. ASM International, Cleveland

    Google Scholar 

  57. Y. Ouyang, X. Tao, H. Chen, Y. Feng, Y. Du, and Y. Liu: Comput. Mater. Sci., 2009, vol. 47, pp. 297–301.

    Article  CAS  Google Scholar 

  58. X. Tao, Y. Ouyang, H. Liu, Y. Feng, Y. Du, and Z. Jin: Solid State Commun., 2008, vol. 148, pp. 314–8.

    Article  CAS  Google Scholar 

  59. G. Cacciamani, A. Saccone, and R. Ferro: in COST 507-Thermochemical Databases for Light Metal Alloys, I. Ansara, A.T. Dinsdale, and M.H. Rand, eds., European Commission, 1998, pp. 137–40.

  60. K. Nagarajan and F. Sommer: J. Less-Common Met., 1988, vol. 142, pp. 319–28.

    Article  CAS  Google Scholar 

  61. V. Vítek: Philos. Mag., 1968, vol. 18, pp. 773–86.

    Article  Google Scholar 

  62. A. Moitra, S.G. Kim, and M.F. Horstemeyer: J. Phys. Condens. Matter, 2014, vol. 26, p. 445004.

    Article  Google Scholar 

  63. A. Moitra, S.G. Kim, and M.F. Horstemeyer: Acta Mater., 2014, vol. 75, pp. 106–12.

    Article  CAS  Google Scholar 

  64. A. Tehranchi, B. Yin, and W.A. Curtin: Acta Mater., 2018, vol. 151, pp. 56–66.

    Article  CAS  Google Scholar 

  65. K.-H. Kim, J.B. Jeon, N.J. Kim, and B.-J. Lee: Scr. Mater., 2015, vol. 108, pp. 104–8.

    Article  CAS  Google Scholar 

  66. C. Fang, J. Zhang, and F. Pan: J. Alloys Compd., 2019, vol. 785, pp. 911–7.

    Article  CAS  Google Scholar 

  67. H.-S. Jang and B.-J. Lee: Scr. Mater., 2019, vol. 160, pp. 39–43.

    Article  CAS  Google Scholar 

  68. T.B. Massalski, ed.: Binary Alloy Phase Diagrams, second ed., ASM international, Materials Park, OH, 1990.

    Google Scholar 

  69. R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, and S. Suwas: Acta Mater., 2018, vol. 161, pp. 246–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2016R1A2B4006680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Joo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on August 06, 2020; accepted December 14, 2020.

Supplementary information

Below is the link to the electronic supplementary material.

(PDF 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JK., Lee, BJ. The Origin of Activation of Non-basal Slip in Mg-Ce Dilute Alloy: An Atomistic Simulation Study. Metall Mater Trans A 52, 964–974 (2021). https://doi.org/10.1007/s11661-020-06128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06128-x

Navigation