Skip to main content
Log in

Overview of the Recent Study on ELM Mitigation Physics with Different External Actuators on HL-2A Tokamak

  • Review Article
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Mitigation of Edge localized mode(ELM) has been achieved with different external actuators such as lower hybrid wave (LHW), mixture supersonic molecular beam injection(SMBI), and laser blow-off(LBO) impurity seeding on HL-2A. During these experiments, the pedestal turbulence enhancement is commonly observed, which is found closely related to ELM mitigation. The turbulence enhancement is caused by the externally driven the velocity shear rate without change of the turbulence correlation length, but correlated to its radial wavenumber spectral shift. A common plausible mechanism for the ELM mitigation with different external source input seems to be involved. A modified theoretical model based on the turbulence radial wavenumber spectral shift is used and successfully interprets the experimental observations. The simulation suggests that a critical growth rate of the most unstable mode, also identified by the experimental results, survives in the competition of the velocity shear rate, enhancing the turbulence intensity. An example of the LHW case is used and good agreements have been found between the experimental results and simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Copyright from IAEA 2018 (Color figure online)

Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982)

    Article  ADS  Google Scholar 

  2. F. Wagner, Eur. Phys. J. H 43, 523–549 (2018)

    Article  Google Scholar 

  3. R.J. Groebner, Phys. Fluids B 5, 2343 (1993)

    Article  ADS  Google Scholar 

  4. H. Zohm, Plasma Phys. Control. Fusion 38, 105 (1996)

    Article  ADS  Google Scholar 

  5. A. Loarte et al., Plasma Phys. Control. Fusion 45, 1549 (2003)

    Article  ADS  Google Scholar 

  6. G. Federici et al., J. Nucl. Mater. 313–6, 11 (2003)

    Article  ADS  Google Scholar 

  7. W.P. West et al., Nucl. Fusion 45, 1708 (2005)

    Article  ADS  Google Scholar 

  8. K.H. Burrell et al., Nucl. Fusion 49, 085024 (2009)

    Article  ADS  Google Scholar 

  9. W. Suttrop et al., Nucl. Fusion 45, 721 (2005)

    Article  ADS  Google Scholar 

  10. W. Suttrop et al., Plasma Phys. Control. Fusion 45, 1399 (2003)

    Article  ADS  Google Scholar 

  11. Y. Sakamoto et al., Plasma Phys. Control 46, A299 (2004)

    Article  Google Scholar 

  12. W.L. Zhong et al., Nucl. Fusion 53, 083030 (2013)

    Article  ADS  Google Scholar 

  13. D.G. Whyte et al., Nucl. Fusion 50, 105005 (2010)

    Article  ADS  Google Scholar 

  14. F. Ryter et al., Nucl. Fusion 57, 016004 (2017)

    Article  ADS  Google Scholar 

  15. A. Marinoni et al., Nucl. Fusion 55, 093019 (2015)

    Article  ADS  Google Scholar 

  16. X. Feng et al., Nucl. Fusion 59, 096025 (2019)

    Article  ADS  Google Scholar 

  17. T. Ozeki et al., Nucl. Fusion 30, 1425 (1990)

    Article  Google Scholar 

  18. N. Oyama et al., Nucl. Fusion 45, 871 (2005)

    Article  ADS  Google Scholar 

  19. J. Stober et al., Nucl. Fusion 41, 1123 (2001)

    Article  ADS  Google Scholar 

  20. Q.Q. Yang et al., Nucl. Fusion 60, 076012 (2020)

    Article  ADS  Google Scholar 

  21. P.T. Lang et al., Nucl. Fusion 43, 1110 (2003)

    Article  ADS  Google Scholar 

  22. T.E. Evans et al., Phys. Rev. Lett. 92, 235003 (2004)

    Article  ADS  Google Scholar 

  23. W.W. Xiao et al., Nucl. Fusion 52, 114027 (2012)

    Article  ADS  Google Scholar 

  24. A.W. Degeling et al., Plasma Phys. Control. Fusion 45, 1637 (2003)

    Article  ADS  Google Scholar 

  25. Y. Liang et al., Phys. Rev. Lett. 110, 235002 (2013)

    Article  ADS  Google Scholar 

  26. S. Jachmich et al., Plasma Phys. Control. Fusion 44, 1879 (2002)

    Article  ADS  Google Scholar 

  27. P.T. Lang et al., Nucl. Fusion 44, 665 (2004)

    Article  ADS  Google Scholar 

  28. F. Romanelli et al., Nucl. Fusion 49, 104006 (2009)

    Article  ADS  Google Scholar 

  29. L.R. Baylor et al., Phys. Rev. Lett. 110, 245001 (2013)

    Article  ADS  Google Scholar 

  30. Zou X.L. et al 2012 Proc. 24th Int. Conf. on Fusion Energy 2012 (San Diego, CA, 8–13 October 2012) PD/P8–08 (www-naweb.iaea.org/napc/physics/FEC/FEC2012/index.htm)

  31. W.W. Xiao et al., Nucl. Fusion 54, 023003 (2014)

    Article  ADS  Google Scholar 

  32. H.Y. Lee et al., Phys. Plasmas 22, 122512 (2015)

    Article  ADS  Google Scholar 

  33. T.E. Evans et al., Nat. Phys. 2, 419 (2006)

    Article  Google Scholar 

  34. Y. Liang et al., Phys. Rev. Lett. 98, 265004 (2007)

    Article  ADS  Google Scholar 

  35. A. Kirk et al., Nucl. Fusion 50, 034008 (2010)

    Article  ADS  Google Scholar 

  36. W. Suttrop et al., Phys. Rev. Lett. 106, 225004 (2011)

    Article  ADS  Google Scholar 

  37. Y.W. Sun et al., Phys. Rev. Lett. 117, 115001 (2016)

    Article  ADS  Google Scholar 

  38. X.R. Duan et al., Nucl. Fusion 57, 102013 (2017)

    Article  ADS  Google Scholar 

  39. P.T. Lang et al., Plasma Phys. Control. Fusion 46, L31 (2004)

    Article  Google Scholar 

  40. L.D. Horton et al., Plasma Phys. Control. Fusion 46, B511 (2004)

    Article  Google Scholar 

  41. J.X. Rossel et al., Nucl. Fusion 52, 032004 (2012)

    Article  ADS  Google Scholar 

  42. J.G. Li et al., Nat. Phys. 9, 817 (2013)

    Article  Google Scholar 

  43. G.L. Xiao et al., Phys. Plasmas 24, 122507 (2017)

    Article  ADS  Google Scholar 

  44. R. Maingi et al., Phys. Rev. Lett. 107, 145004 (2011)

    Article  ADS  Google Scholar 

  45. M.N.A. Beurskens et al., Nucl. Fusion 48, 095004 (2008)

    Article  ADS  Google Scholar 

  46. Y.P. Zhang et al., Nucl. Fusion 58, 046018 (2018)

    Article  ADS  Google Scholar 

  47. P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002)

    Article  ADS  Google Scholar 

  48. G.T.A. Huysmans et al., Plasma Phys. Control. Fusion 51, 124012 (2009)

    Article  ADS  Google Scholar 

  49. B.D. Dudson et al., Plasma Phys. Control. Fusion 53, 054005 (2011)

    Article  ADS  Google Scholar 

  50. Chandra et al., Nucl. Fusion 57, 076001 (2017)

    Article  ADS  Google Scholar 

  51. T. Rhee et al., Phys. Plasmas 27, 072503 (2020)

    Article  ADS  Google Scholar 

  52. G.R. McKee et al., Nucl. Fusion 53, 113011 (2013)

    Article  ADS  Google Scholar 

  53. X.R. Duan et al., Nucl. Fusion 50, 095011 (2010)

    Article  ADS  Google Scholar 

  54. M. Xu et al., Nucl. Fusion 59, 112017 (2019)

    Article  ADS  Google Scholar 

  55. Z.Y. Cui et al., Chin. Phys. Lett. 23, 2143 (2006)

    Article  ADS  Google Scholar 

  56. Z.Y. Cui et al., Nucl. Fusion 53, 093001 (2013)

    Article  ADS  Google Scholar 

  57. W.W. Xiao et al., Rev. Sci. Instrum. 81, 013506 (2010)

    Article  ADS  Google Scholar 

  58. Z.C. Yang et al., Phys. Plasmas 23, 012515 (2015)

    Article  ADS  Google Scholar 

  59. W.L. Zhong et al., Nucl. Fusion 59, 076033 (2019)

    Article  ADS  Google Scholar 

  60. L. Nie et al., Plasma Phys. Control. Fusion 56, 055006 (2014)

    Article  ADS  Google Scholar 

  61. J. Li et al., Nucl. Fusion 59, 076013 (2019)

    Article  ADS  Google Scholar 

  62. G.M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)

    Article  ADS  Google Scholar 

  63. G.S. Xu et al., Phys. Rev. Lett. 116, 095002 (2016)

    Article  ADS  Google Scholar 

  64. M.K. Han et al., Nucl. Fusion 57, 046019 (2017)

    Article  ADS  Google Scholar 

  65. G.L. Xiao et al., Phys. Plasmas 26, 072303 (2019)

    Article  ADS  Google Scholar 

  66. P.W. Xi et al., Phys. Rev. Lett. 112, 085001 (2014)

    Article  ADS  Google Scholar 

  67. G.L. Xiao et al., Nucl. Fusion 59, 12603 (2019)

    Google Scholar 

  68. Xiao G.L. et al IAEA Fusion Energy Conference, Ahmedabad, India, 26th Oct. 2018, p. EX/7–4.

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China under Grant Nos. 2017YFE0301100 and 2017YFE0301106. This work was also partially supported by the National Natural Science Foundation of China (Grant Nos. 11775070 and 11575055), Young Elite Scientists Sponsorship Program by CAST (No. 2016QNRC001), and Sichuan Science and Technology Program (No. 2018JY0054). This work was also partially supported within the framework of the cooperation between the French Commissariat a l’Energie Atomique et aux Energies Alternatives (CEA) and the China National Nuclear Corporation (CNNC).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to G. L. Xiao or W. L. Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G.L., Zhong, W.L., Zhang, Y.P. et al. Overview of the Recent Study on ELM Mitigation Physics with Different External Actuators on HL-2A Tokamak. J Fusion Energ 39, 300–312 (2020). https://doi.org/10.1007/s10894-021-00281-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-021-00281-w

Keywords

Navigation