Skip to main content

Advertisement

Log in

Learning and memory disorders related to hippocampal inflammation following exposure to air pollution

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

It has been demonstrated that sub-chronic exposure to air pollution containing nanoscale (˂100 nm) diesel exhaust particles (DEPs) may lead to excessive oxidative stress and neuro-inflammation in adult male mice. Hereby, we investigated the effects of DEPs on hippocampus-dependent spatial learning and neuro-inflammation and memory-related gene expression in male mice. In this study, we divided 48 adult NMRI male mice into control group VS. three exposure groups. Mice were exposed to 300-350 μg/m3 DEPs for 2, 5, and 7 h daily for 12 weeks. The Morris Water Maze (MWM) and Elevated Plus Maze device were used to examine anxiety, spatial memory and learning, respectively. The mRNAs expression of pro-inflammatory cytokines, N-methyl-D-aspartate (NMDA) receptor subunits, and glutaminase were studied in hippocampus (HI) by real-time RT-PCR. Besides, malondialdehyde (MDA) tests were used to determine the state of oxidative stress. After 5 and 7 h. of DEPs exposure, mRNA expression of NR2A and NR3B IL1α, IL1β, TNFα, NMDA receptor subunits and MDA levels increased significantly (P < 0.05). Also, DEPs exposed mice for 2, 5, and 7 h. showed diminished entrance into open arms with short time spent there. Indeed, 5 and 7 h/day exposed mice required a longer time to reach the hidden platform. Sub-chronic exposure to DEPs increased oxidative stress markers, neuroinflammation, anxiety, impaired spatial learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The dataset used in this study is available with the authors and can be made available upon request.

References

  1. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD, American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism, Particulate matter air pollution and cardiovascular disease. Circulation, 2010. 121(21): p. 2331–2378.

  2. Xu F, et al. Investigation of the chemical components of ambient fine particulate matter (PM2. 5) associated with in vitro cellular responses to oxidative stress and inflammation. Environ Int. 2020;136:105475.

    Article  CAS  Google Scholar 

  3. Jonidi Jafari A, Ehsanifar M. The share of different vehicles in air pollutant emission in Tehran, Using 2013 traffic information. Caspian Journal of Health Research. 2016;2(2):28–36.

    Article  Google Scholar 

  4. Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA III, et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci. 2018;115(38):9592–7.

    Article  CAS  Google Scholar 

  5. Møller KL, Brauer C, Mikkelsen S, Bonde JP, Loft S, Helweg-Larsen K, et al. Cardiovascular disease and long-term occupational exposure to ultrafine particles: a cohort study of airport workers. Int J Hyg Environ Health. 2020;223(1):214–9.

    Article  Google Scholar 

  6. Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch Toxicol. 2016;90(7):1541–53.

    Article  CAS  Google Scholar 

  7. Suzuki T, Oshio S, Iwata M, Saburi H, Odagiri T, Udagawa T, et al. In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice. Particle and fibre toxicology. 2010;7(1):7.

    Article  CAS  Google Scholar 

  8. Danysh HE, Mitchell LE, Zhang K, Scheurer ME, Lupo PJ. Traffic-related air pollution and the incidence of childhood central nervous system tumors: Texas, 2001–2009. Pediatr Blood Cancer. 2015;62(9):1572–8.

    Article  CAS  Google Scholar 

  9. Ullman TL. Investigation of the effects of fuel composition on heavy-duty diesel engine emissions. SAE Trans. 1989:833–51.

  10. Reşitoğlu İA, Altinişik K, Keskin A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Techn Environ Policy. 2015;17(1):15–27.

    Article  Google Scholar 

  11. McClellan R. Toxicological effects of emissions from diesel engines. Dev Toxicol Environ Sci. 1986;13:3–8.

    CAS  Google Scholar 

  12. Pronk A, Coble J, Stewart PA. Occupational exposure to diesel engine exhaust: a literature review. Journal of exposure science and environmental epidemiology. 2009;19(5):443–57.

    Article  CAS  Google Scholar 

  13. Fujita EM, Watson JG, Chow JC, Magliano KL. Receptor model and emissions inventory source apportionments of nonmethane organic gases in California's San Joaquin Valley and San Francisco Bay Area. Atmos Environ. 1995;29(21):3019–35.

    Article  CAS  Google Scholar 

  14. Offenberg JH, Baker JE. Aerosol size distributions of elemental and organic carbon in urban and over-water atmospheres. Atmos Environ. 2000;34(10):1509–17.

    Article  CAS  Google Scholar 

  15. Pierson WR, Brachaczek WW. Particulate matter associated with vehicles on the road. II Aerosol Science and Technology. 1982;2(1):1–40.

  16. Dutcher J, et al. Generation and characterization of radiolabeled diesel exhaust. Am Ind Hyg Assoc J. 1984;45(7):491–8.

    Article  CAS  Google Scholar 

  17. Sturm R. Deposition of diesel exhaust particles in the human lungs: theoretical simulations and experimental data. Cancer. 2017;31:32.

    Google Scholar 

  18. Tokiwa H, Ohnishi Y, Rosenkranz HS. Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. CRC Crit Rev Toxicol. 1986;17(1):23–58.

    Article  CAS  Google Scholar 

  19. Ehsanifar M, Jafari AJ, Nikzad H, Zavareh MS, Atlasi MA, Mohammadi H, et al. Prenatal exposure to diesel exhaust particles causes anxiety, spatial memory disorders with alters expression of hippocampal pro-inflammatory cytokines and NMDA receptor subunits in adult male mice offspring. Ecotoxicol Environ Saf. 2019;176:34–41.

    Article  CAS  Google Scholar 

  20. Lankoff A, Brzoska K, Czarnocka J, Kowalska M, Lisowska H, Mruk R, et al. A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st-and 2nd-generation biodiesel fuels in relation to their physicochemical properties—the FuelHealth project. Environ Sci Pollut Res. 2017;24(23):19357–74.

    Article  CAS  Google Scholar 

  21. Ehsanifar M, Tameh AA, Farzadkia M, Kalantari RR, Zavareh MS, Nikzaad H, et al. Exposure to nanoscale diesel exhaust particles: oxidative stress, neuroinflammation, anxiety and depression on adult male mice. Ecotoxicol Environ Saf. 2019;168:338–47.

    Article  CAS  Google Scholar 

  22. Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology. 2017;59:133–9.

    Article  CAS  Google Scholar 

  23. Tombaugh GC, Rowe WB, Chow AR, Michael TH, Rose GM. Theta-frequency synaptic potentiation in CA1 in vitro distinguishes cognitively impaired from unimpaired aged Fischer 344 rats. J Neurosci. 2002;22(22):9932–40.

    Article  CAS  Google Scholar 

  24. Takeuchi T, Duszkiewicz AJ, Morris RG. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1633):20130288.

    Article  Google Scholar 

  25. Newsholme P, Lima MMR, Procopio J, Pithon-Curi TC, Doi SQ, Bazotte RB, et al. Glutamine and glutamate as vital metabolites. Braz J Med Biol Res. 2003;36(2):153–63.

    Article  CAS  Google Scholar 

  26. Botman D, Tigchelaar W, Van Noorden CJ. Determination of phosphate-activated glutaminase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry). Journal of Histochemistry & Cytochemistry. 2014;62(11):813–26.

    Article  Google Scholar 

  27. Block M, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J. 2004;18(13):1618–20.

    Article  CAS  Google Scholar 

  28. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003;111(4):455–60.

    Article  CAS  Google Scholar 

  29. Shemer A, Erny D, Jung S, Prinz M. Microglia plasticity during health and disease: an immunological perspective. Trends in Immunology. 2015;36(10):614–25.

    Article  CAS  Google Scholar 

  30. Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B. Microglia: dynamic mediators of synapse development and plasticity. Trends in immunology. 2015;36(10):605–13.

    Article  Google Scholar 

  31. Win-Shwe T-T, Mitsushima D, Yamamoto S, Fujitani Y, Funabashi T, Hirano S, et al. Extracellular glutamate level and NMDA receptor subunit expression in mouse olfactory bulb following nanoparticle-rich diesel exhaust exposure. Inhal Toxicol. 2009;21(10):828–36.

    Article  CAS  Google Scholar 

  32. Win-Shwe T-T, Yamamoto S, Fujitani Y, Hirano S, Fujimaki H. Spatial learning and memory function-related gene expression in the hippocampus of mouse exposed to nanoparticle-rich diesel exhaust. Neurotoxicology. 2008;29(6):940–7.

    Article  CAS  Google Scholar 

  33. Walf AA, Frye CA. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology. 2006;31(6):1097–111.

    Article  CAS  Google Scholar 

  34. Ehsanifar M. Anxiety and depression following diesel exhaust Nano-particles exposure in male and female mice. J Neurophysiol Neurol Disord. 2020;8:1–8.

    Google Scholar 

  35. Kesner RP, Lee I, Gilbert P. A behavioral assessment of hippocampal function based on a subregional analysis. Rev Neurosci. 2004;15(5):333–52.

    Article  Google Scholar 

  36. Sharma DR, Sunkaria A, Bal A, Bhutia YD, Vijayaraghavan R, Flora SJS, et al. Neurobehavioral impairments, generation of oxidative stress and release of pro-apoptotic factors after chronic exposure to Sulphur mustard in mouse brain. Toxicol Appl Pharmacol. 2009;240(2):208–18.

    Article  CAS  Google Scholar 

  37. Woodward NC, Pakbin P, Saffari A, Shirmohammadi F, Haghani A, Sioutas C, et al. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons. Neurobiol Aging. 2017;53:48–58.

    Article  CAS  Google Scholar 

  38. Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol. 2011;667(1–3):222–9.

    Article  CAS  Google Scholar 

  39. Sato H, Takahashi T, Sumitani K, Takatsu H, Urano S. Glucocorticoid generates ROS to induce oxidative injury in the hippocampus, leading to impairment of cognitive function of rats. J Clin Biochem Nutr. 2010;47(3):224–32.

    Article  CAS  Google Scholar 

  40. Morris R, et al. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297(5868):681–3.

    Article  CAS  Google Scholar 

  41. Aljerf, L. and M. Aljurf, Improvements in the ecological and nutritional aspects of Down's syndrome. 2020.

    Google Scholar 

  42. Takeuchi H, Mizuno T, Zhang G, Wang J, Kawanokuchi J, Kuno R, et al. Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem. 2005;280(11):10444–54.

    Article  CAS  Google Scholar 

  43. Fonken LK, Xu X, Weil ZM, Chen G, Sun Q, Rajagopalan S, et al. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry. 2011;16(10):987–95.

    Article  CAS  Google Scholar 

  44. Morris R, et al. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986;319(6056):774–6.

    Article  CAS  Google Scholar 

  45. Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor ε2 subunit mutant mice. Neuron. 1996;16(2):333–44.

    Article  CAS  Google Scholar 

  46. Constantine-Paton M, Cline HT. LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become. Curr Opin Neurobiol. 1998;8(1):139–48.

    Article  CAS  Google Scholar 

  47. Calderón-Garcidueñas L, Vojdani A, Blaurock-Busch E, Busch Y, Friedle A, Franco-Lira M, et al. Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration. J Alzheimers Dis. 2015;43(3):1039–58.

    Article  Google Scholar 

  48. Yokota S, Hori H, Umezawa M, Kubota N, Niki R, Yanagita S, et al. Gene expression changes in the olfactory bulb of mice induced by exposure to diesel exhaust are dependent on animal rearing environment. PLoS One. 2013;8(8):e70145.

    Article  CAS  Google Scholar 

  49. Beauquis J, Pavía P, Pomilio C, Vinuesa A, Podlutskaya N, Galvan V, et al. Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer's disease. Exp Neurol. 2013;239:28–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ehsanifar Lab. for technical assistance. This work was supported by Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mojtaba Ehsanifar or Ahmad Jonidi Jafari.

Ethics declarations

Competing interests

The authors declared that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsanifar, M., Jafari, A.J., Montazeri, Z. et al. Learning and memory disorders related to hippocampal inflammation following exposure to air pollution. J Environ Health Sci Engineer 19, 261–272 (2021). https://doi.org/10.1007/s40201-020-00600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00600-x

Keywords

Navigation