Skip to main content
Log in

Characterization of the domestic goat γδ T cell receptor gene loci and gene usage

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Goats and cattle diverged 30 million years ago but retain similarities in immune system genes. Here, the caprine T cell receptor (TCR) gene loci and transcription of its genes were examined and compared to cattle. We annotated the TCR loci using an improved genome assembly (ARS1) of a highly homozygous San Clemente goat. This assembly has already proven useful for describing other immune system genes including antibody and leucocyte receptors. Both the TCRγ (TRG) and TCRδ (TRD) loci were similarly organized in goats as in cattle and the gene sequences were highly conserved. However, the number of genes varied slightly as a result of duplications and differences occurred in mutations resulting in pseudogenes. WC1+ γδ T cells in cattle have been shown to use TCRγ genes from only one of the six available cassettes. The structure of that Cγ gene product is unique and may be necessary to interact with WC1 for signal transduction following antigen ligation. Using RT-PCR and PacBio sequencing, we observed the same restriction for goat WC1+ γδ T cells. In contrast, caprine WC1+ and WC1 γδ T cell populations had a diverse TCRδ gene usage although the propensity for particular gene usage differed between the two cell populations. Noncanonical recombination signal sequences (RSS) largely correlated with restricted expression of TCRγ and δ genes. Finally, caprine γδ T cells were found to incorporate multiple TRD diversity gene sequences in a single transcript, an unusual feature among mammals but also previously observed in cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All data is available upon request.

References

  • Adams EJ, Chien YH, Garcia KC (2005) Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22. Sci 308:227–231

    Article  CAS  Google Scholar 

  • Antonacci R, Lanave C, Del Faro L, Vaccarelli G, Ciccarese S, Massari S (2005) Artiodactyl emergence is accompanied by the birth of an extensive pool of diverse germline TRDV1 genes. Immunogenetics 57:254–266

    Article  CAS  PubMed  Google Scholar 

  • Antonacci R, Linguiti G, Burger PA, Castelli V, Pala A et al (2020a) Comprehensive genomic analysis of the dromedary T cell receptor gamma (TRG) locus and identification of a functional TRGC5 cassette. Dev Comp Immunol 106:103614

  • Antonacci R, Massari S, Linguiti G, Caputi Jambrenghi A, Giannico F, et al (2020b) Evolution of the T-Cell Receptor (TR) Loci in the Adaptive Immune Response: The Tale of the TRG Locus in Mammals. Genes (Basel) 11

  • Antonacci R, Vaccarelli G, Di Meo GP, Piccinni B, Miccoli MC et al (2007) Molecular in situ hybridization analysis of sheep and goat BAC clones identifies the transcriptional orientation of T cell receptor gamma genes on chromosome 4 in bovids. Vet Res Commun 31:977–983

    Article  CAS  PubMed  Google Scholar 

  • Backstrom BT, Milia E, Peter A, Jaureguiberry B, Baldari CT, Palmer E et al (1996) A motif within the T cell receptor alpha chain constant region connecting peptide domain controls antigen responsiveness. Immun 5:437–447

    Article  CAS  Google Scholar 

  • Baldwin CL, Sathiyaseelan T, Naiman B, White AM, Brown R et al (2002) Activation of bovine peripheral blood gammadelta T cells for cell division and IFN-gamma production. Vet Immunol Immunopathol 87:251–259

    Article  CAS  PubMed  Google Scholar 

  • Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR et al (2017) Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet 49:643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumerman SL, Herzig CT, Baldwin CL (2007) WC1+ gammadelta T cell memory population is induced by killed bacterial vaccine. Eur J Immunol 37:1204–1216

    Article  CAS  PubMed  Google Scholar 

  • Blumerman SL, Herzig CT, Rogers AN, Telfer JC, Baldwin CL (2006) Differential TCR gene usage between WC1- and WC1+ ruminant gammadelta T cell subpopulations including those responding to bacterial antigen. Immunogenetics 58:680–692

    Article  CAS  PubMed  Google Scholar 

  • Campbell MS, Holt C, Moore B, Yandell M (2014) Genome annotation and curation using MAKER and MAKER-P. Curr Protoc Bioinform 48:4–11

    Article  Google Scholar 

  • Chen C, Hsu H, Hudgens E, Telfer JC, Baldwin CL (2014) Signal transduction by different forms of the gammadelta T cell-specific pattern recognition receptor WC1. J Immunol 193:379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Kshirsagar S, Jensen I, Lau K, Covarrubias R et al (2009) Characterization of arrangement and expression of the T cell receptor gamma locus in the sandbar shark. Proc Natl Acad Sci USA 106:8591–8596

    Article  CAS  PubMed  Google Scholar 

  • Connelley TK, Degnan K, Longhi CW, Morrison WI (2014) Genomic analysis offers insights into the evolution of the bovine TRA/TRD locus. BMC Genomics 15:994

    Article  PubMed  PubMed Central  Google Scholar 

  • Conrad ML, Mawer MA, Lefranc MP, McKinnell L, Whitehead J et al (2007) The genomic sequence of the bovine T cell receptor gamma TRG loci and localization of the TRGC5 cassette. Vet Immunol Immunopathol 115:346–356

    Article  CAS  PubMed  Google Scholar 

  • Damani-Yokota P, Gillespie A, Pasman Y, Merico D, Connelley TK et al (2018) Bovine T cell receptors and gammadelta WC1 co-receptor transcriptome analysis during the first month of life. Dev Comp Immunol 88:190–199

    Article  CAS  PubMed  Google Scholar 

  • Davis WC, Naessens J, Brown WC, Ellis JA, Hamilton MJ et al (1996) Analysis of monoclonal antibodies reactive with molecules upregulated or expressed only on activated lymphocytes. Vet Immunol Immunopathol 52:301–311

    Article  CAS  PubMed  Google Scholar 

  • Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC EvolBiol 10:8

    Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gellert M (2002) V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 71:101–132

    Article  CAS  PubMed  Google Scholar 

  • Giannico F, Massari S, Jambrenghi AC, Soriano A, Pala A et al (2020) The expansion of the TRB and TRG genes indomestic goats (Capra hircus) is characteristic of the ruminant species. BMC Genomics 21:17

    Article  Google Scholar 

  • Hanby-Flarida MD, Trask OJ, Yang TJ, Baldwin CL (1996) Modulation of WC1, a lineage-specific cell surface molecule of gamma/delta T cells augments cellular proliferation. Immunology 88:116–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanin A, Golub R, Lewis SM, Wu GE (2000) Evolution of the recombination signal sequences in the Ig heavy-chain variable region locus of mammals. Proc Natl Acad Sci USA 97:11415–11420

    Article  CAS  PubMed  Google Scholar 

  • Hein WR, Mackay CR (1991) Prominence of gamma delta T cells in the ruminant immune system. Immunol Today 12:30–34

    Article  CAS  PubMed  Google Scholar 

  • Herzig CT, Lefranc MP, Baldwin CL (2010) Annotation and classification of the bovine T cell receptor delta genes. BMC Genomics 11:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Herzig CT, Mailloux VL, Baldwin CL (2015) Spectratype analysis of the T cell receptor delta CDR3 region of bovine gammadelta T cells responding to leptospira. Immunogenetics 67:95–109

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro N, Aida Y, Shinagawa T, Shinagawa M (1993) Molecular structures of cattle T-cell receptor gamma and delta chains predominantly expressed on peripheral blood lymphocytes. Immunogenetics 38:437–443

    Article  CAS  PubMed  Google Scholar 

  • Krangel MS (2009) Mechanics of T cell receptor gene rearrangement. CurrOpinImmunol 21:133–139

    CAS  Google Scholar 

  • Lahmers KK, Norimine J, Abrahamsen MS, Palmer GH, Brown WC (2005) The CD4+ T cell immunodominantAnaplasmamarginale major surface protein 2 stimulates gammadelta T cell clones that express unique T cell receptors. J Leukoc Biol 77:199–208

    Article  CAS  PubMed  Google Scholar 

  • Lewis SE, Searle SM, Harris N, Gibson M, Lyer V et al (2002) Apollo: a sequence annotation editor. Genome Biol 3(12):1–4

    Article  Google Scholar 

  • Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L et al (2013) Crystal structure of Vdelta1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human gammadelta T cells. Immun 39:1032–1042

    Article  CAS  Google Scholar 

  • Mackay CR, Hein WR (1989) A large proportion of bovine T cells express the gamma delta T cell receptor and show a distinct tissue distribution and surface phenotype. Int Immunol 1:540–545

    Article  CAS  PubMed  Google Scholar 

  • Madi A, Shifrut E, Reich-Zeliger S, Gal H, Best K et al (2014) T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity. Genome Res 24:1603–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamedov IZ, Britanova OV, Zvyagin IV, Turchaninova MA, Bolotin DA et al (2013) Preparing unbiased T-cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling. Front Immunol 4:456

    Article  PubMed  PubMed Central  Google Scholar 

  • McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Waters WR et al (2014) Specific recognition of mycobacterial protein and peptide antigens by gammadelta T cell subsets following infection with virulent Mycobacterium bovis. J Immunol 192:2756–2769

    Article  CAS  PubMed  Google Scholar 

  • Meraviglia S, El Daker S, Dieli F, Martini F, Martino A (2011) gammadelta T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011:587315

    Article  PubMed  PubMed Central  Google Scholar 

  • Miccoli MC, Antonacci R, Vaccarelli G, Lanave C, Massari S et al (2003) Evolution of TRG clusters in cattle and sheep genomes as drawn from the structural analysis of the ovine TRG2@ locus. J Mol Evol 57:52–62

    Article  CAS  PubMed  Google Scholar 

  • Naiman BM, Alt D, Bolin CA, Zuerner R, Baldwin CL (2001) Protective killed Leptospiraborgpetersenii vaccine induces potent Th1 immunity comprising responses by CD4 and gammadelta T lymphocytes. Infect Immun 69:7550–7558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naiman BM, Blumerman S, Alt D, Bolin CA, Brown R et al (2002) Evaluation of type 1 immune response in naive and vaccinated animals following challenge with LeptospiraborgpeterseniiserovarHardjo: involvement of WC1(+) gammadelta and CD4 T cells. Infect Immun 70:6147–6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra ZE, Baker ML, Hathaway J, Lopez AM, Trujillo J et al (2008) Comparative genomic analysis and evolution of the T cell receptor loci in the opossum Monodelphisdomestica. BMC Genomics 9:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Piccinni B, Massari S, CaputiJambrenghi A, Giannico F, Lefranc MP et al (2015) Sheep (Ovisaries) T cell receptor alpha (TRA) and delta (TRD) genes and genomic organization of the TRA/TRD locus. BMC Genomics 16:709

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers AN, Vanburen DG, Hedblom EE, Tilahun ME, Telfer JC, Baldwin CL et al (2005) Gammadelta T cell function varies with the expressed WC1 coreceptor. J Immunol 174:3386–3393

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JC, Philp RL, Bickhart DM, Smith TPL, Hammond JA (2018) The antibody loci of the domestic goat (Capra hircus). Immunogenetics 70:317–326

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JC, Sanderson ND, Bickhart DM, Smith TPL, Hammond JA (2019) The structure, evolution, and gene expression within the caprine leukocyte receptor complex. Front Immunol 10:2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowder JT, Chen CL, Ager LL, Chan MM, Cooper MD (1988) A large subpopulation of avian T cells express a homologue of the mammalian T gamma/delta receptor. J Exp Med 167:315–322

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu HH, Denyer MS, Stirling C, Cox S, Aggarwal N et al (2006) Porcine gammadelta T cells: possible roles on the innate and adaptive immune responses following virus infection. Vet Immunol Immunopathol 112:49–61

    Article  CAS  PubMed  Google Scholar 

  • Uenishi H, Eguchi-Ogawa T, Toki D, Morozumi T, Tanaka-Matsuda M et al (2009) Genomic sequence encoding diversity segments of the pig TCR delta chain gene demonstrates productivity of highly diversified repertoire. Mol Immunol 46:1212–1221

    Article  CAS  PubMed  Google Scholar 

  • Vaccarelli G, Miccoli MC, Antonacci R, Pesole G, Ciccarese S (2008) Genomic organization and recombinational unit duplication-driven evolution of ovine and bovine T cell receptor gamma loci. BMC Genomics 9:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaccarelli G, Miccoli MC, Lanave C, Massari S, Cribiu EP, Ciccarese S et al (2005) Genomic organization of the sheep TRG1@ locus and comparative analyses of Bovidae and human variable genes. Gene 357:103–114

    Article  CAS  PubMed  Google Scholar 

  • Van Rhijn I, Spiering R, Smits M, van Blokland MT, de Weger R et al (2007) Highly diverse TCR delta chain repertoire in bovine tissues due to the use of up to four D segments per delta chain. Mol Immunol 44:3155–3161

    Article  PubMed  Google Scholar 

  • Wang F, Herzig CT, Chen C, Hsu H, Baldwin CL, Telfer JC et al (2011) Scavenger receptor WC1 contributes to the gammadelta T cell response to Leptospira. Mol Immunol 48:801–809

    Article  CAS  PubMed  Google Scholar 

  • Washington EA, Kimpton WG, Cahill RN (1992) Changes in the distribution of alpha beta and gamma delta T cells in blood and in lymph nodes from fetal and postnatal lambs. Dev Comp Immunol 16:493–501

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Lieber MR (1993) Lymphoid V(D)J recombination. Functional analysis of the spacer sequence within the recombination signal. J Biol Chem 268:3180–3183

    Article  CAS  PubMed  Google Scholar 

  • Willcox CR, Vantourout P, Salim M, Zlatareva I, Melandri D et al (2019) Butyrophilin-like 3 directly binds a human Vgamma4(+) T cell receptor using a modality distinct from clonally-restricted antigen. Immun 51(813–25):e4

    Google Scholar 

  • Yang YG, Ohta S, Yamada S, Shimizu M, Takagaki Y (1995) Diversity of T cell receptor delta-chain cDNA in the thymus of a one-month-old pig. J Immunol 155:1981–1993

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Sun Y, Ma Y, Li Z, Zhao Y et al (2017) A comprehensive analysis of the germline and expressed TCR repertoire in White Peking duck. Sci Rep 7:41426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yirsaw A, Baldwin CL (2020) Goat gamma delta T cells. Dev Comp Immunol 114:15

    Google Scholar 

  • Yirsaw AW, Gillespie A, Britton E, Doerle A, Johnson L, Marston S, Telfer JC, Baldwin CL et al (2021) Goat γδ T cell subpopulations defined by WC1 gene expression, responses to pathogens and cytokine expression. Dev Comp Immunol

Download references

Acknowledgments

We would like to thank Dr. Amy Burnside, Institute of Applied Life Sciences at the University of Massachusetts Amherst, for assistance with the flow cytometry and Ms. Alice Newth, Livestock Learning Center at the University’s Hadley Farm, for being accommodating and assisting with blood collection. The USDA is an equal opportunity provider and employer. The mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Funding

This work was funded by the US Department of Agriculture, National Institute for Food and Agriculture’s Agriculture and Food Research initiative (AFRI-NIFA-USDA) grant no. 2015-06970. DB was supported by USDA appropriated project 509031000-026-00-D. TS was supported by USDA appropriated project 3040-31000-100-00-D.

Author information

Authors and Affiliations

Authors

Contributions

AG and AY are co-first authors; they obtained and analyzed the genome annotation and gene sequence data; KG trained the computer program for genome annotation and chromosome mapping; TS and DB were involved in sequencing and assembling the caprine genome used here; MT constructed software programs to analyze the PacBio data; TC, JT, and CB conceived of the project, obtained funding, and supervised it. All authors contributed to writing the manuscript and constructing figures.

Corresponding author

Correspondence to Cynthia L. Baldwin.

Ethics declarations

Ethics approval

All work involving obtaining blood samples from cattle, goats, and sheep was approved by the University of Massachusetts’ Animal Care and Use Committee.

Consent to publication

All authors have agreed with the content of this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

251_2021_1203_MOESM2_ESM.pptx

Supplementary file2: Fig. S1 Deduced amino acid alignment of TRGC5 cassette’s genes (a) Location of the caprine and bovine TRG genes at two loci on chromosome 4 (substantial gap indicated as a double slash). The caprine TRG1 locus is inverted. Although the structures are similar between the species it is notable that there are several duplication or deletion events including the addition of the C8 cassette in the caprine TRG2 locus. (b) Deduced amino acid sequence alignment of genes in the bovine and caprine TRGC5 cassette using ClustalW. Dashes (-) are gaps introduced for maximal alignment. Dots (.) represent the same nucleotide as shown for the first sequence. A prefix of c indicates caprine while b indicates bovine sequences. Pseudogenes are indicated by φ. Fig S2 All TCR genes of caprine and bovine aligned Deduced amino acid sequence alignment using ClustalW of bovine and caprine TCR genes. (a) TRGV, (b) TRGC, and (c) TRDV. Dashes (-) are gaps introduced for preferred alignment. Dots (.) represent the same nucleotide as shown for the first sequence. Fig. S3 Phylogenetic tree of caprine and bovine TRDV genes TRDV genes were lined up with ClustalW using default parameters and displayed in a neighbor-joining phylogenetic tree. Bovine sequences follow naming conventions from previous annotations (Connelley et al 2014, Damani-Yokota et al 2018, Herzig et al 2010). Lines indicate the 11 subclades of bovine TRDV1 genes previously defined (Herzig et al 2010). A prefix of c indicates caprine while b indicates bovine sequences. (PPTX 10094 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillespie, A., Yirsaw, A., Gunasekaran, K.P. et al. Characterization of the domestic goat γδ T cell receptor gene loci and gene usage. Immunogenetics 73, 187–201 (2021). https://doi.org/10.1007/s00251-021-01203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-021-01203-y

Keywords

Navigation