Skip to main content
Log in

Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Polymer-based dielectric capacitors are widely-used energy storage devices. However, although the functions of dielectrics in applications like high-voltage direct current transmission projects, distributed energy systems, high-power pulse systems and new energy electric vehicles are similar, their requirements can be quite different. Low electric loss is a critical prerequisite for capacitors for electric grids, while high-temperature stability is an essential pre-requirement for those in electric vehicles. This paper reviews recent advances in this area, and categorizes dielectrics in terms of their foremost properties related to their target applications. Requirements for polymer-based dielectrics in various power electronic equipment are emphasized, including high energy storage density, low dissipation, high working temperature and fast-response time. This paper considers innovations including chemical structure modification, composite fabrication and structure re-design, and the enhancements to material performances achieved. The advantages and limitations of these methods are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amri F. Renewable and non-renewable categories of energy consumption and trade: Do the development degree and the industrialization degree matter? Energy, 2019, 173: 374–383

    Google Scholar 

  2. Tabor D P, Roch L M, Saikin S K, Kreistoph C, Sheberla D, Montoya J H, Dwaraknath S, Aykol M, Ortiz C, Tribukait H, et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nature Reviews. Materials, 2018, 3(5): 5–20

    CAS  Google Scholar 

  3. Beltrop K, Beuker S, Heckmann A, Winter M, Placke T. Alternative electrochemical energy storage: Potassium-based dual-graphite batteries. Energy & Environmental Science, 2017, 10(10): 2090–2094

    CAS  Google Scholar 

  4. Wu J, Pan Z, Zhang Y, Wang B, Peng H. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 12932–12944

    CAS  Google Scholar 

  5. Fic K, Platek A, Piwek J, Frackowiak E. Sustainable materials for electrochemical capacitors. Materials Today, 2018, 21(4): 437–454

    CAS  Google Scholar 

  6. González A, Goikolea E, Barrena J A, Mysyk R. Review on supercapacitors: Technologies and materials. Renewable & Sustainable Energy Reviews, 2016, 58: 1189–1206

    Google Scholar 

  7. Eftekhari A. The mechanism of ultrafast supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(7): 2866–2876

    CAS  Google Scholar 

  8. Niaz S, Manzoor T, Pandith A H. Hydrogen storage: Materials, methods and perspectives. Renewable & Sustainable Energy Reviews, 2015, 50: 457–469

    CAS  Google Scholar 

  9. Barthelemy H, Weber M, Barbier F. Hydrogen storage: Recent improvements and industrial perspectives. International Journal of Hydrogen Energy, 2017, 42(11): 7254–7262

    CAS  Google Scholar 

  10. Ahmed A, Seth S, Purewal J, Wong-Foy A G, Veenstra M, Matzger A J, Siegel D J. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nature Communications, 2019, 10(1): 1568

    PubMed  PubMed Central  Google Scholar 

  11. Xue Y, Zhang X P, Yang C. Series capacitor compensated AC filterless flexible LCC HVDC with enhanced power transfer under unbalanced faults. IEEE Transactions on Power Systems, 2019, 34(4): 3069–3080

    Google Scholar 

  12. Yuan X, Liu X, Zuo J. The development of new energy vehicles for a sustainable future: A review. Renewable & Sustainable Energy Reviews, 2015, 42: 298–305

    Google Scholar 

  13. Satyanarayana N, Rajawat R K, Basu S, Durga Prasad Rao A, Mittal K C. High power microwaves generation from intense relativistic electron beam using Kali-1000 pulse power system. Instruments and Experimental Techniques, 2016, 59(3): 368–373

    CAS  Google Scholar 

  14. Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 2005, 105(3): 1021–1021

    CAS  Google Scholar 

  15. Tomago A, Shimizu T, Iijima Y, Yamauchi I. Development of oil-impregnated, all-polypropylene-film power capacitor. IEEE Transactions on Electrical Insulation, 1977, E1–12(4): 293–301

    Google Scholar 

  16. Zhu Y, Jiang P, Zhang Z, Huang X. Dielectric phenomena and electrical energy storage of poly (vinylidene fluoride) based high-k polymers. Chinese Chemical Letters, 2017, 28(11): 2027–2035

    CAS  Google Scholar 

  17. Prateek, Thakur V K, Gupta R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews, 2016, 116(7): 4260–1317

    CAS  PubMed  Google Scholar 

  18. Chen Q, Shen Y, Zhang S, Zhang Q M. Polymer-based dielectrics with high energy storage density. Annual Review of Materials Research, 2015, 45(1): 433–458

    CAS  Google Scholar 

  19. Li Q, Yao F Z, Liu Y, Zhang G, Wang H, Wang Q. High-temperature dielectric materials for electrical energy storage. Annual Review of Materials Research, 2018, 48(1): 219–243

    CAS  Google Scholar 

  20. Zhu L, Wang Q. Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules, 2012, 45(7): 2937–2954

    CAS  Google Scholar 

  21. Zhu L. Exploring strategies for high dielectric constant and low loss polymer dielectrics. Journal of Physical Chemistry Letters, 2014, 5(21): 3677–3687

    CAS  Google Scholar 

  22. Chung D D L. Composite Materials: Functional Materials for Modern Technologies. London: Springer-Verlag, 2004, 125–166

    Google Scholar 

  23. Kittel C. Introduction to Solid State Physics. New York: Wiley, 1976, 53–485

    Google Scholar 

  24. Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M, Liu H. Homogeneous/inhomogeneous—structured dielectrics and their energy—storage performances. Advanced Materials, 2017, 29(20): 1601727

    Google Scholar 

  25. Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook. Advanced Functional Materials, 2018, 28(42): 1803665

    Google Scholar 

  26. Kutnjak Z, Petzelt J, Blinc R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature, 2006, 441(7096): 956–959

    CAS  PubMed  Google Scholar 

  27. Liu Z K, Li X, Zhang Q M. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Applied Physics Letters, 2012, 101(8): 082904

    Google Scholar 

  28. Yao K, Chen S, Rahimabady M, Mirshekarloo M S, Yu S, Tay F E H, Sritharan T, Lu L. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(9): 1968–1974

    PubMed  Google Scholar 

  29. Guo N, DiBenedetto S A, Tewari P, Lanagan M T, Ratner M A, Marks T J. Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide- polyolefin nanocomposites: Experiment and theory. Chemistry of Materials, 2010, 22(4): 1567–1578

    CAS  Google Scholar 

  30. Li W, Meng Q, Zheng Y, Zhang Z, Xia W, Xu Z. Electric energy storage properties of poly (vinylidene fluoride). Applied Physics Letters, 2010, 96(19): 192905

    Google Scholar 

  31. Xia W, Zhang Z. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectrics, 2018, 1(1): 17–31

    Google Scholar 

  32. Farmer B L, Hopfinger A J, Lando J B. Polymorphism of poly (vinylidene fluoride): Potential energy calculations of the effects of head-to-head units on the chain conformation and packing of poly (vinylidene fluoride). Journal of Applied Physics, 1972, 43(11): 4293–4303

    CAS  Google Scholar 

  33. Han R, Jin J, Khanchaitit P, Wang J, Wang Q. Effect of crystal structure on polarization reversal and energy storage of ferroelectric poly (vinylidene fluoride-co-chlorotrifluoroethylene) thin films. Polymer, 2012, 53(6): 1277–1281

    CAS  Google Scholar 

  34. Bharti V, Zhao X Z, Zhang Q M, Romotowski T, Tito F, Ting R. Ultrahigh field induced strain and polarization response in electron irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Materials Research Innovations, 1998, 2(2): 57–63

    CAS  Google Scholar 

  35. Xu H, Shanthi G, Bharti V, Zhang Q M, Ramotowski T. Structural, conformational, and polarization changes of poly (vinylidene fluoride-trifluoroethylene) copolymer induced by high-energy electron irradiation. Macromolecules, 2000, 33(11): 4125–4131

    CAS  Google Scholar 

  36. Guan F, Wang J, Pan J, Wang Q, Zhu L. Effects of polymorphism and crystallite size on dipole reorientation in poly (vinylidene fluoride) and its random copolymers. Macromolecules, 2010, 43(16): 6739–6748

    CAS  Google Scholar 

  37. Gadinski M R, Chanthad C, Han K, Dong L, Wang Q. Synthesis of poly (vinylidene fluoride-co-bromotrifluoroethylene) and effects of molecular defects on microstructure and dielectric properties. Polymer Chemistry, 2014, 5(20): 5957–5966

    CAS  Google Scholar 

  38. Daudin B, Dubus M, Legrand J F. Effects of electron irradiation and annealing on ferroelectric vinylidene fluoride-trifluoroethylene copolymers. Journal of Applied Physics, 1987, 62(3): 994–997

    CAS  Google Scholar 

  39. Zhang Y, Zhang C, Feng Y, Zhang T, Chen Q, Chi Q, Liu L, Wang X, Lei Q. Energy storage enhancement of P (VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy, 2019, 66: 104195

    CAS  Google Scholar 

  40. Zhang Y, Chi Q, Liu L, Zhang C, Chen C, Wang X, Lei Q. Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly (vinylidene fluoride)-based dielectric film for high energy density capacitor. APL Materials, 2017, 5(7): 076109

    Google Scholar 

  41. Gadinski M R, Li Q, Zhang G, Zhang X, Wang Q. Understanding of relaxor ferroelectric behavior of poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers. Macromolecules, 2015, 48(8): 2731–2739

    CAS  Google Scholar 

  42. Zhang D, Liu W, Guo R, Zhou K, Luo H. High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array. Advancement of Science, 2018, 5(2): 1700512

    Google Scholar 

  43. Wei J, Zhang Z, Tseng J K, Treufeld I, Liu X, Litt M H, Zhu L. Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups. ACS Applied Materials & Interfaces, 2015, 7(9): 5248–5257

    CAS  Google Scholar 

  44. Thakur V K, Tan E J, Lin M F, Lee P S. Poly (vinylidene fluoride)-graft-poly (2-hydroxyethyl methacrylate): A novel material for high energy density capacitors. Journal of Materials Chemistry, 2011, 21(11): 3751–3759

    CAS  Google Scholar 

  45. Li J, Tan S, Ding S, Li H, Yang L, Zhang Z. High-field antiferroelectric behaviour and minimized energy loss in poly (vinylidene-co-trifluoroethylene)-graft-poly (ethyl methacrylate) for energy storage application. Journal of Materials Chemistry, 2012, 22(44): 23468–23476

    CAS  Google Scholar 

  46. Bendler J T, Boyles D A, Edmondson C A, Filipova T, Fontanella J J, Westgate M A, Wintersgill M C. Dielectric properties of bisphenol A polycarbonate and its tethered nitrile analogue. Macromolecules, 2013, 46(10): 4024–4033

    CAS  Google Scholar 

  47. Hao Y, Wang X, Bi K, Zhang J, Huang Y, Wu L, Zhao P, Xu K, Lei M, Li L. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy, 2017, 31: 49–56

    CAS  Google Scholar 

  48. Bi K, Bi M, Hao Y, Luo W, Cai Z, Wang X, Huang Y. Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy, 2018, 51: 513–523

    CAS  Google Scholar 

  49. Wu P, Zhang L, Shan X. Microstructure and dielectric response of BaSrTiO3/P (VDF-CTFE) nanocomposites. Materials Letters, 2015, 159: 72–75

    CAS  Google Scholar 

  50. Lu X, Zhang L, Tong Y, Cheng Z. BST-P (VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Composites. Part B, Engineering, 2019, 168: 34–43

    CAS  Google Scholar 

  51. Yao L, Pan Z, Zhai J, Zhang G, Liu Z, Liu Y. High-energy-density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application. Composites. Part A, Applied Science and Manufacturing, 2018, 109: 48–54

    CAS  Google Scholar 

  52. Yao L, Pan Z, Liu S, Zhai J, Chen H. Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly(vinylidene fluoride). ACS Applied Materials & Interfaces, 2016, 8(39): 26343–26351

    CAS  Google Scholar 

  53. Gu L, Li T, Xu Y, Sun C, Yang Z, Zhu D, Chen D. Effects of the particle size of BaTiO3 fillers on fabrication and dielectric properties of BaTiO3/polymer/Al films for capacitor energy-storage application. Materials (Basel), 2019, 12(3): 439

    CAS  Google Scholar 

  54. Xie B, Zhang H, Zhang Q, Zang J, Yang C, Wang Q, Li M Y, Jiang S. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(13): 6070–6078

    CAS  Google Scholar 

  55. Bai Y, Cheng Z Y, Bharti V, Xu H, Zhang M. High-dielectric-constant ceramic-powder polymer composites. Applied Physics Letters, 2000, 76(25): 3804–3806

    CAS  Google Scholar 

  56. Wang S, Sun J, Tong L, Guo Y, Wang H, Wang C. Superior dielectric properties in Na0.35%Ba99,65%Ti99.65%Nb0.35%O3/PVDF composites. Materials Letters, 2018, 211: 114–117

    CAS  Google Scholar 

  57. Bauhofer W, Kovacs J Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 2009, 69(10): 1486–1498

    CAS  Google Scholar 

  58. Nuzhnyy D, Savinov M, Bovtun V, Kempa M, Petzelt J, Mayoral B, McNally T. Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly (ethylene terephthalate) around their low percolation threshold. Nanotechnology, 2013, 24(5): 055707

    CAS  PubMed  Google Scholar 

  59. Zhang L, Wang W, Wang X, Bass P, Cheng Z. Metal-polymer nanocomposites with high percolation threshold and high dielectric constant. Applied Physics Letters, 2013, 103(23): 232903

    Google Scholar 

  60. Zhang L, Gao R, Hu P, Dang Z. Preparation and dielectric properties of polymer composites incorporated with polydopamine@AgNPs core-satellite particles. RSC Advances, 2016, 6(41): 34529–34533

    CAS  Google Scholar 

  61. Wen R, Guo J, Zhao C, Liu Y. Nanocomposite capacitors with significantly enhanced energy density and breakdown strength utilizing a small loading of monolayer titania. Advanced Materials Interfaces, 2018, 5(3): 1701088

    Google Scholar 

  62. Sheng Y, Zhang X, Ye H, Liang L, Xu L, Wu H. Improved energy density in core-shell poly (dopamine) coated barium titanate/poly (fluorovinylidene-co-trifluoroethylene) nanocomposite with interfacial polarization. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2020, 585: 124091

    CAS  Google Scholar 

  63. Sun H, Zhang H, Liu S, Ning N, Zhang L, Tian M, Wang Y. Interfacial polarization and dielectric properties of aligned carbon nanotubes/polymer composites: The role of molecular polarity. Composites Science and Technology, 2018, 154: 145–153

    CAS  Google Scholar 

  64. Wang Q, Zhu L. Polymer nanocomposites for electrical energy storage. Journal of Polymer Science. Part B, Polymer Physics, 2011, 49(20): 1421–1429

    CAS  Google Scholar 

  65. Tanaka T, Kozako M, Fuse N, Ohki Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669–681

    CAS  Google Scholar 

  66. Lewis T J. Interfaces: Nanometric dielectrics. Journal of Physics. D, Applied Physics, 2005, 38(2): 202–212

    CAS  Google Scholar 

  67. Krishnamoorti R. Strategies for dispersing nanoparticles in polymers. MRS Bulletin, 2007, 32(4): 341–347

    CAS  Google Scholar 

  68. Zhang X, Chen W, Wang J, Shen Y, Gu L, Lin Y, Nan C W. Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers. Nanoscale, 2014, 6(12): 6701–6709

    CAS  PubMed  Google Scholar 

  69. Zhou T, Zha J W, Cui R, Fan B, Yuan J, Dang Z. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Applied Materials & Interfaces, 2011, 3(7): 2184–2188

    CAS  Google Scholar 

  70. Lin M F, Thakur V K, Tan E J, Lee P. Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Advances, 2011, 1(4): 576–578

    CAS  Google Scholar 

  71. Chen T, Liu B. Enhanced dielectric properties of poly (vinylidene fluoride) composite filled with polyaniline-iron core-shell nanocomposites. Materials Letters, 2018, 210: 165–168

    CAS  Google Scholar 

  72. Haleem M N, Rajapakse A D. Fault type discrimination in HVDC transmission lines using rate of change of local currents. IEEE Transactions on Power Delivery, 2019, 885: 8977

    Google Scholar 

  73. Li W, Jiang L, Zhang X, Shen Y, Nan C. High-energy-density dielectric films based on polyvinylidene fluoride and aromatic polythiourea for capacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(38): 15803–15807

    CAS  Google Scholar 

  74. Zheng M S, Zha J W, Yang Y, Han P, Hu C, Wen Y, Dang Z. Polyurethane induced high breakdown strength and high energy storage density in polyurethane/poly (vinylidene fluoride) composite films. Applied Physics Letters, 2017, 110(25): 252902

    Google Scholar 

  75. Zheng M S, Zha J W, Yang Y, Han P, Hu C, Dang Z. Enhanced breakdown strength of poly (vinylidene fluoride) utilizing rubber nanoparticles for energy storage application. Applied Physics Letters, 2016, 109(7): 072902

    Google Scholar 

  76. Hu P, Song Y, Liu H, Shen Y, Lin Y, Nan C. Largely enhanced energy density in flexible P (VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO3 fibers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(5): 1688–1693

    CAS  Google Scholar 

  77. Zhang Y, Zhang C, Feng Y, Zhang T, Chen Q, Chi Q, Liu L, Cui Y, Wang X, Dang Z, Lei Q. Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy, 2019, 56: 138–150

    CAS  Google Scholar 

  78. Zhang X, Shen Y, Xu B, Zhang Q, Gu L, Jiang J, Ma J, Lin Y, Nan C. Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Advanced Materials, 2016, 28(10): 2055–2061

    CAS  PubMed  Google Scholar 

  79. Zhang X, Shen Y, Zhang Q, Gu L, Hu Y, Du J, Lin Y, Nan W. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Advanced Materials, 2015, 27(5): 819–824

    CAS  PubMed  Google Scholar 

  80. Pan Z, Yao L, Zhai J, Wang H, Shen B. Ultrafast discharge and enhanced energy density of polymer nanocomposites loaded with 0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 one-dimensional nanofibers. ACS Applied Materials & Interfaces, 2017, 9(16): 14337–14346

    CAS  Google Scholar 

  81. Li Q, Zhang G, Liu F, Han K, Gadinski M R, Xiong C X, Wang Q. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy & Environmental Science, 2015, 8(3): 922–931

    CAS  Google Scholar 

  82. Xie Y, Yu Y, Feng Y, Jiang W, Zhang Z. Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly (dopamine) encapsulated BaTiO3. ACS Applied Materials & Interfaces, 2017, 9(3): 2995–3005

    CAS  Google Scholar 

  83. Luo S, Yu J, Yu S, Sun R, Cao L, Liao W, Wong C. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Advanced Energy Materials, 2019, 9(5): 1803204

    Google Scholar 

  84. Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites. Advanced Materials, 2015, 27(42): 6658–6663

    CAS  PubMed  Google Scholar 

  85. Baer E, Zhu L. 50th anniversary perspective: Dielectric phenomena in polymers and multilayered dielectric films. Macromolecules, 2017, 50(6): 2239–2256

    CAS  Google Scholar 

  86. Nian W, Wang Z, Wang T, Xiao Y, Chen H. Significantly enhanced breakdown strength and energy density in sandwich-structured NBT/PVDF composites with strong interface barrier effect. Ceramics International, 2018, 44: S50–S53

    CAS  Google Scholar 

  87. Carr J M, Mackey M, Flandin L, Schuele D, Zhu L, Baer E. Effect of biaxial orientation on dielectric and breakdown properties of poly (ethylene terephthalate)/poly (vinylidene fluoride-co-tetrafluoroethylene) multilayer films. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(11): 882–896

    CAS  Google Scholar 

  88. Wang Y, Hou Y, Deng Y. Effects of interfaces between adjacent layers on breakdown strength and energy density in sandwich-structured polymer composites. Composites Science and Technology, 2017, 145: 71–77

    CAS  Google Scholar 

  89. Jiang J, Shen Z, Qian J, Dan Z, Guo M, Lin Y, Nan C, Chen L, Shen Y. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Materials, 2019, 18: 213–221

    Google Scholar 

  90. Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Advanced Energy Materials, 2019, 9(36): 1901826

    Google Scholar 

  91. Yin K, Zhang J, Li Z, Feng J, Zhang C, Chen X, Olah A, Schuele D E, Zhu L, Baer E. Polymer multilayer films for high temperature capacitor application. Journal of Applied Polymer Science, 2019, 136(20): 47535

    Google Scholar 

  92. Pei J Y, Zha J W, Zhou W Y, Wang S, Zhong S, Yin L, Zheng M, Cai H, Dang Z. Enhancement of breakdown strength of multilayer polymer film through electric field redistribution and defect modification. Applied Physics Letters, 2019, 114(10): 103702

    Google Scholar 

  93. Zebouchi N, Bendaoud M, Essolbi R, Malec D, Ai B, Giam H. Electrical breakdown theories applied to polyethylene terephthalate films under the combined effects of pressure and temperature. Journal of Applied Physics, 1996, 79(5): 2497–2501

    CAS  Google Scholar 

  94. Ho J, Jow T R. High field conduction in biaxially oriented polypropylene at elevated temperature. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 990–995

    CAS  Google Scholar 

  95. Chen S, Meng G, Kong B, Xiao B, Wang Z, Jing Z, Gao Y, Wu G, Wang H, Cheng Y. Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chemical Engineering Journal, 2020, 387: 123662

    CAS  Google Scholar 

  96. Guan F, Yang L, Wang J, Guan B, Han K, Wang Q, Zhu L. Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications. Advanced Functional Materials, 2011, 21(16): 3176–3188

    CAS  Google Scholar 

  97. Guan F, Wang J, Yang L, Tseng J, Han K, Wang Q, Zhu L. Confinement-induced high-field antiferroelectric-like behavior in poly (vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer. Macromolecules, 2011, 44(7): 2190–2199

    CAS  Google Scholar 

  98. Guan F, Yuan Z, Shu E W, Zhu L. Fast discharge speed in poly (vinylidene fluoride) graft copolymer dielectric films achieved by confined ferroelectricity. Applied Physics Letters, 2009, 94(5): 052907

    Google Scholar 

  99. Tan K M, Ramachandaramurthy V K, Yong J Y. Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renewable & Sustainable Energy Reviews, 2016, 53: 720–732

    Google Scholar 

  100. Zhang N Y, Ho J, Runt J, Zhang S H. Light weight high temperature polymer film capacitors with dielectric loss lower than polypropylene. Journal of Materials Science Materials in Electronics, 2015, 26(12): 9396–9401

    CAS  Google Scholar 

  101. Joshi M, Jauhari S, Desai K R. Polyureas: Synthesis and characterization. International Journal of Chem-Tech Research CODEN (USA), 2011, 3(1): 29–32

    CAS  Google Scholar 

  102. Cheng Z, Lin M, Wu S, Thakur Y, Zhou Y, Jeong D, Shen Q, Zhang Q. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors. Applied Physics Letters, 2015, 106(20): 202902

    Google Scholar 

  103. Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Lagodkine E, Haque A, Chen L, Jackson T, Wang Q. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 2015, 523(7562): 576–579

    CAS  PubMed  Google Scholar 

  104. Dang Z M, Lin Y Q, Xu H P, Shi C Y, Li S T, Bai J. Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability. Advanced Functional Materials, 2008, 18(10): 1509–1517

    CAS  Google Scholar 

  105. Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Advanced Materials, 2009, 21(20): 2077–2082

    CAS  Google Scholar 

  106. Wang L, Li J, Wang D, Wang D, Li H. Preparation and properties of core-shell silver/polyimide nanocomposites. Polymer Bulletin, 2014, 71(10): 2661–2670

    CAS  Google Scholar 

  107. Beier C W, Sanders J M, Brutchey R L. Improved breakdown strength and energy density in thin-film polyimide nanocomposites with small barium strontium titanate nanocrystal fillers. Journal of Physical Chemistry C, 2013, 117(14): 6958–6965

    CAS  Google Scholar 

  108. Wang M, Li W L, Feng Y, Hou Y, Zhang T D, Fei W D, Yin J H. Effect of BaTiO3 nanowires on dielectric properties and energy storage density of polyimide composite films. Ceramics International, 2015, 41(10): 13582–13588

    CAS  Google Scholar 

  109. Azizi A, Gadinski M R, Li Q, Alsaud M, Wang J, Wang Y, Wang B, Liu F, Chen L, Alem N, Wang Q. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Advanced Materials, 2017, 29(35): 1701864

    Google Scholar 

  110. Zhao G, Deng W, Xia H, Zhang M. Research on common aperture optical device for high energy laser system. In: 14th National Conference on Laser Technology and Optoelectronics (LTO 2019). Bellingham: International Society for Optics and Photonics, 2019, 11170: 1117010

    Google Scholar 

  111. Jow T R, MacDougall F W, Ennis J B, Yang X H, Schneider M A, Scozzie C J, White J D, MacDonald J R, Schalnat M C, Cooper R A, et al. Pulsed power capacitor development and outlook. In: IEEE Pulsed Power Conference (PPC). New York: IEEE, 2015, 1–7

    Google Scholar 

  112. Lynn C, Neuber A, Matthews E, Walter J, Kristiansen M. A low impedance 500 kV 2.7 kJ Marx generator as testbed for vacuum diodes. In: IEEE International Power Modulator and High Voltage Conference. New York: IEEE, 2010, 417–420

    Google Scholar 

  113. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang M. A dielectric polymer with high electric energy density and fast discharge speed. Science, 2006, 313(5785): 334–336

    CAS  PubMed  Google Scholar 

  114. Mao J, Wang S, Cheng Y, Wu J. Influence of pulse front steepness on vacuum flashover characteristics. Applied Surface Science, 2018, 448: 261–269

    CAS  Google Scholar 

  115. Stephanovich V A, Luk’yanchuk I A, Karkut M G. Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices. Physical Review Letters, 2005, 94(4): 047601

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ18E030004), State Key Laboratory of Electrical Insulation and Power Equipment (Grant No. EIPE19204) and Zhejiang Top Priority Discipline of Textile Science and Engineering/Material Science and Engineering (Grant No. 2019YBZX03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhang or Yonghong Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Mao, J., Wang, S. et al. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Front. Chem. Sci. Eng. 15, 18–34 (2021). https://doi.org/10.1007/s11705-020-1939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1939-4

Keywords

Navigation