Skip to main content
Log in

Reductant-assisted polydopamine-modified membranes for efficient water purification

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Surface engineering with polydopamine coatings has been considered a promising surface functionalisation tool. However, it is difficult to control the self-polymerisation for polydopamine formation, which usually causes severe interparticle aggregation. In this study, polydopamine self-polymerisation was controlled by adjusting its reducing environment using a reductant (NaBH4) to fabricate mixed cellulose ester (MCE)/polydopamine membranes. An oxidising environment using NaIO4 was additionally tested as the control. The results showed that a thin polydopamine coating with small polydopamine particles was formed on the skeleton frameworks of the MCE membrane with NaBH4, and the self-polymerisation rate was suppressed. The polydopamine coating formed in the reducing environment facilitated excellent water transport performance with a water permeance of approximately 400 L · m−2 · h−1 · bar−1 as well as efficient organic foulant removal with a bovine serum albumin rejection of approximately 90%. In addition, the polydopamine coating with NaBH4 exhibited both excellent chemical stability and anti-microbial activity, demonstrating the contribution of the reducing environment to the performance of the MCE/polydopamine membranes. It shows significant potential for use in water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee A, Elam J W, Darling S B. Membrane materials for water purification: design, development, and application. Environmental Science. Water Research & Technology, 2016, 2(1): 17–42

    CAS  Google Scholar 

  2. Fane A G, Wang R, Hu M X. Synthetic membranes for water purification: status and future. Angewandte Chemie International Edition, 2015, 54(11): 3368–3386

    CAS  PubMed  Google Scholar 

  3. Yu H, Qiu X, Moreno N, Ma Z, Calo V M, Nunes S P, Peinemann K V. Self-assembled asymmetric block copolymer membranes: bridging the gap from ultra to nanofiltration. Angewandte Chemie International Edition, 2015, 54(47): 13937–13941

    CAS  PubMed  Google Scholar 

  4. Sorribas S, Gorgojo P, Téllez C, Coronas J, Livingston A G. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. Journal of the American Chemical Society, 2013, 135(40): 15201–15208

    CAS  PubMed  Google Scholar 

  5. Lau W J, Ismail A F. Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination, 2009, 245(1): 321–348

    CAS  Google Scholar 

  6. Xu J, Feng X, Hou J, Wang X, Shan B T, Yu L M, Gao C J. Preparation and characterization of a novel polysulfone ultrafiltration membrane using a copolymer with capsaicin-mimic moieties for improved anti-fouling properties. Journal of Membrane Science, 2013, 446: 171–180

    CAS  Google Scholar 

  7. Xu J, Feng X S, Chen P P, Gao C J. Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane. Journal of Membrane Science, 2012, 431–414: 62–69

    Google Scholar 

  8. Li M, Xu J, Chang C Y, Feng C, Zhang L, Tang Y, Gao C. Bioinspired fabrication of composite nano-filtration membrane based on the formation of 3,4-dihydroxyphenethylamine/PEI layer followed by cross-linking. Journal of Membrane Science, 2014, 459: 62–71

    CAS  Google Scholar 

  9. Wang K, Dong Y, Yan Y, Zhang S, Li J. Mussel-inspired chemistry for preparation of super-hydrophobic surfaces on porous substrates. RSC Advances, 2017, 7(46): 29149–29158

    CAS  Google Scholar 

  10. Postma A, Yan Y, Wang Y, Zelikin A N, Tjipto E, Caruso F. Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chemistry of Materials, 2009, 21(14): 3042–3044

    CAS  Google Scholar 

  11. Ryou M H, Lee Y M, Park J K, Choi J W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Advanced Materials, 2011, 23(27): 3066–3070

    CAS  PubMed  Google Scholar 

  12. Peng H P, Liang R P, Zhang L, Qiu J D. Facile preparation of novel core-shell enzyme-Au-polydopamine-Fe3O4 magnetic bio-nanoparticles for glucosesensor. Biosensors & Bioelectronics, 2013, 42: 293–299

    CAS  Google Scholar 

  13. Cao Y, Zhang X, Tao L, Li K, Xue Z, Feng L, Wei Y. Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation. ACS Applied Materials & Interfaces, 2013, 5(10): 4438–4442

    CAS  Google Scholar 

  14. Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 2016, 8(38): 16819–16840

    CAS  PubMed  Google Scholar 

  15. Lee H, Dellatore S M, Miller W M, Messersmith P B. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426–430

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi G M, Chung T S. Thin film composite membranes on ceramic for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2013, 448: 34–43

    CAS  Google Scholar 

  17. Jiang J H, Zhu L P, Li X L, Xu Y Y, Zhu B K. Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. Journal of Membrane Science, 2010, 364(1–2): 194–202

    CAS  Google Scholar 

  18. Yang Z, Wu Y, Guo H, Ma X H, Lin C E, Zhou Y, Cao B, Zhu B K, Shi K, Tang C Y. A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: separation performance enhancement and implications. Journal of Membrane Science, 2017, 544: 351–358

    CAS  Google Scholar 

  19. Zhu J, Uliana A, Wang J, Yuan S, Li J, Tian M, Simoens K, Volodin A, Lin J, Bernaerts K, Zhang Y, Van der Bruggen B. Elevated salt transport of antimicrobial loose nanofiltration membranes enabled by copper nanoparticles via fast bioinspired deposition. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(34): 13211–13222

    CAS  Google Scholar 

  20. Zhu J, Wang J, Uliana A, Tian M, Zhang Y, Zhang Y, Volodin A, Simoens K, Yuan S, Li J, Lin J, Bernaerts K, Van der Bruggen B. Mussel-inspired architecture of high-flux loose nanofiltration membrane functionalized with antibacterial reduced graphene oxide-copper nanocomposites. ACS Applied Materials & Interfaces, 2017, 9(34): 28990–29001

    CAS  Google Scholar 

  21. Shen H, Wang N, Ma K, Wang L, Chen G, Ji S. Tuning inter-layer spacing of graphene oxide laminates with solvent green to enhance its nanofiltration performance. Journal of Membrane Science, 2017, 527: 43–50

    CAS  Google Scholar 

  22. Shao L, Wang Z X, Zhang Y L, Jiang Z X, Liu Y Y. A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. Journal of Membrane Science, 2014, 461: 10–21

    CAS  Google Scholar 

  23. Yang H C, Pi J K, Liao K J, Huang H, Wu Q Y, Huang X J, Xu Z K. Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Applied Materials & Interfaces, 2014, 6(15): 12566–12572

    CAS  Google Scholar 

  24. Zeng R, Luo Z, Zhou D, Cao F, Wang Y. A novel PEG coating immobilized onto capillary through polydopamine coating for separation of proteins in CE. Electrophoresis, 2010, 31(19): 3334–3341

    CAS  PubMed  Google Scholar 

  25. Zeng T, Zhang X L, Niu H Y, Ma Y R, Li W H, Cai Y Q. In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Applied Catalysis B: Environmental, 2013, 134–135: 26–33

    Google Scholar 

  26. Lee H, Rho J, Messersmith P B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials, 2009, 21(4): 431–434

    CAS  PubMed  Google Scholar 

  27. Hou C, Qi Z, Zhu H. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Colloids and Surfaces. B, Biointerfaces, 2015, 128: 544–551

    CAS  PubMed  Google Scholar 

  28. Yang K, Lee J S, Kim J, Lee Y B, Shin H, Um S H, Kim J B, Park K I, Lee H, Cho S W. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012, 33(29): 6952–6964

    CAS  PubMed  Google Scholar 

  29. Zhou R, Ren P F, Yang H C, Xu Z K. Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. Journal of Membrane Science, 2014, 466: 18–25

    CAS  Google Scholar 

  30. Shevate R, Kumar M, Karunakaran M, Hedhili M N, Peinemann K V. Polydopamine/cysteine surface modified isoporous membranes with selfcleaning properties. Journal of Membrane Science, 2017, 529: 185–194

    CAS  Google Scholar 

  31. Ingole P G, Choi W, Kim K H, Park C H, Choi W K, Lee H K. Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation. Chemical Engineering Journal, 2014, 243: 137–146

    CAS  Google Scholar 

  32. Arena J T, Manickam S S, Reimund K K, Freeman B D, McCutcheon J R. Solute and water transport in forward osmosis using polydopamine modified thin film composite membranes. Desalination, 2014, 343: 8–16

    CAS  Google Scholar 

  33. Li F, Meng J, Ye J, Yang B, Tian Q, Deng C. Surface modification of PES ultrafiltration membrane by polydopamine coating and poly (ethyleneglycol) grafting: morphology, stability, and anti-fouling. Desalination, 2014, 344: 422–430

    CAS  Google Scholar 

  34. Tripathi B P, Dubey N C, Subair R, Choudhury S, Stamm M. Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles. RSC Advances, 2016, 6(6): 4448–4457

    CAS  Google Scholar 

  35. Chen Y, He C. High salt permeation nanofiltration membranes based on NMG assisted polydopamine coating for dye/salt fractionation. Desalination, 2017, 413: 29–39

    CAS  Google Scholar 

  36. Xu L N, Xu J, Shan B T, Wang X L, Gao C J. Novel thin-film composite membranes via manipulating the synergistic interaction of dopamine and m-phenylenediamine for highly efficient forward osmosis desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 7920–7932

    CAS  Google Scholar 

  37. Jiang J H, Zhu L P, Zhang H T, Zhu B K, Xu Y Y. Improved hydrodynamic permeability and antifouling properties of poly (vinylidene fluoride) membranes using polydopamine nanoparticles as additives. Journal of Membrane Science, 2014, 457: 73–81

    CAS  Google Scholar 

  38. Cheng C, Li S, Zhao W, Wei Q, Nie S, Sun S, Zhao C. The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. Journal of Membrane Science, 2012, 417–418: 228–236

    Google Scholar 

  39. Guo H, Yao Z, Wang J, Yang Z, Ma X, Tang C Y. Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. Journal of Membrane Science, 2018, 551: 234–242

    CAS  Google Scholar 

  40. Ryu J, Ku S H, Lee H, Park C B. Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Advanced Functional Materials, 2010, 20(13): 2132–2139

    CAS  Google Scholar 

  41. Liu X, Cao J, Li H, Li J, Jin Q, Ren K, Ji J. Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nano-particles in vivo. ACS Nano, 2013, 7(10): 9384–9395

    CAS  PubMed  Google Scholar 

  42. Ryu J H, Messersmith P B, Lee H. Polydopamine surface chemistry: a decade of discovery. ACS Applied Materials & Interfaces, 2018, 10(9): 7523–7540

    CAS  Google Scholar 

  43. Fei B, Qian B, Yang Z, Wang R, Liu W C, Mak C L, Xin J H. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon, 2008, 46(13): 1795–1797

    CAS  Google Scholar 

  44. Han G, Zhang S, Li X, Widjojo N, Chung T S. Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chemical Engineering Science, 2012, 80: 219–231

    CAS  Google Scholar 

  45. Yang H C, Liao K J, Huang H, Wu Q Y, Wan L S, Xu Z K. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(26): 10225–10230

    CAS  Google Scholar 

  46. Yang X, Du Y, Zhang X, He A, Xu Z K. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance. Langmuir, 2017, 33(9): 2318–2324

    CAS  PubMed  Google Scholar 

  47. Wei H, Ren J, Han B, Xu L, Han L, Jia L. Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids and Surfaces. B, Biointerfaces, 2013, 110: 22–28

    CAS  PubMed  Google Scholar 

  48. Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y. Zhu, Xu B Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Applied Materials & Interfaces, 2013, 5(24): 12895–12904

    CAS  Google Scholar 

  49. Bernsmann F, Ball V, Addiego F, Ponche A, Michel M, Gracio J J, Toniazzo V, Ruch D. Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir, 2011, 27(6): 2819–2825

    CAS  PubMed  Google Scholar 

  50. Xu J, Tang Y Y, Wang Y H, Shan B T, Yu L M, Gao C J. Effect of coagulation bath conditions on the morphology and performance of PSf membrane blended with a capsaicin-mimic copolymer. Journal of Membrane Science, 2014, 455: 121–130

    CAS  Google Scholar 

  51. Xu J, Feng S, Gao C J. Surface modification of thin-film-composite poly-amide membranes for improved reverse osmosis performance. Journal of Membrane Science, 2011, 370(1–2): 116–123

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21878279), Fundamental Research funds for the Central Universities (No. 201841012), Natural science fund of Shandong Province Project (No. ZR2018MB032). There was no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Lu, J., Wang, Y. et al. Reductant-assisted polydopamine-modified membranes for efficient water purification. Front. Chem. Sci. Eng. 15, 109–117 (2021). https://doi.org/10.1007/s11705-020-1987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1987-9

Keywords

Navigation