Skip to main content
Log in

Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Nanostructure-based broadband absorbers are prominently attractive in various research fields such as nanomaterials, nanofabrication, nanophotonics and energy utilization. A highly efficient light absorption in wider wavelength ranges makes such absorbers useful in many solar energy harvesting applications. In this review, we present recent advances of broadband absorbers which absorb light by nanostructures. We start from the mechanism and design strategies of broadband absorbers based on different materials such as carbon-based, plasmonic or dielectric materials and then reviewed recent progress of solar energy thermal utilization dependent on the superior photo-heat conversion capacity of broadband absorbers which may significantly influence the future development of solar energy utilization, seawater purification and photoelectronic device design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402

    CAS  PubMed  Google Scholar 

  2. Chen H T. Interference theory of metamaterial perfect absorbers. Optics Express, 2012, 20(7): 7165–7172

    PubMed  Google Scholar 

  3. Ra’di Y, Simovski C R, Tretyakov S A. Thin perfect absorbers for electromagnetic waves: theory, design and realizations. Physical Review Applied, 2015, 3(3): 037001

    Google Scholar 

  4. Hajian H, Ghobadi A, Butun B, Ozbay E. Active metamaterial nearly perfect light absorbers: a review. Journal of the Optical Society of America. B, Optical Physics, 2019, 36(8): F131–F143

    CAS  Google Scholar 

  5. Yang X, Sun Z, Low T, Hu H, Guo X D, García de Abajo F J, Avouris P, Dai Q. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Advanced Materials, 2018, 30(20): 1704896

    Google Scholar 

  6. Zhai Y, Chen G, Ji J, Ma X, Wu Z, Li Y, Wang Q. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection. Nanotechnology, 2019, 30(37): 375201

    CAS  PubMed  Google Scholar 

  7. Zhu L, Gao M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343

    CAS  Google Scholar 

  8. Yang M Q, Gao M, Hong M, Ho G W. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Advanced Materials, 2018, 30(47): 1802894

    Google Scholar 

  9. Rhee J Y, Yoo Y J, Kim K W, Kim Y J, Lee Y P. Metamaterial-based perfect absorbers. Journal of Electromagnetic Waves and Applications, 2014, 28(13): 1541–1580

    Google Scholar 

  10. Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053–2108

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza J L, Martín Rodríguez E, García Solé J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494–9530

    CAS  PubMed  Google Scholar 

  12. Baranwal A, Srivastava A, Kumar P, Bajpai V K, Maurya P K, Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in Microbiology, 2018, 9: 422

    PubMed  PubMed Central  Google Scholar 

  13. Aydin K, Ferry V E, Briggs R M, Atwater H A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2011, 2(1): 517

    PubMed  Google Scholar 

  14. Ng C, Cadusch J J, Dligatch S, Roberts A, Davis T J, Mulvaney P, Gómez D E. Hot carrier extraction with plasmonic broadband absorbers. ACS Nano, 2016, 10(4): 4704–4711

    CAS  PubMed  Google Scholar 

  15. Lu G, Wu F, Zheng M, Chen C, Zhou X, Diao C, Liu F, Du G, Xue C, Jiang H, Chen H. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials. Optics Express, 2019, 27(4): 5326–5336

    PubMed  Google Scholar 

  16. Azad A K, Kort-Kamp W J M, Sykora M, Weisse-Bernstein N R, Luk T S, Taylor A J, Dalvit D A R, Chen H T. Metasurface broadband solar absorber. Scientific Reports, 2016, 6(1): 20347

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Huang H, Bin H, Peng Z, Zhu C, Xue L, Zhang Z G, Zhang O Z, Ade H, Li Y. Synthesis and photovoltaic properties of a series of narrow bandgap organic semiconductor acceptors with their absorption edge reaching 900 nm. Chemistry of Materials, 2017, 29(23): 10130–10138

    CAS  Google Scholar 

  18. Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–1645

    CAS  PubMed  Google Scholar 

  19. Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398

    CAS  Google Scholar 

  20. Ghobadi A, Hajian H, Gokbayrak M, Butun B, Ozbay E. Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber. Nanophotonics, 2019, 8(5): 823–832

    CAS  Google Scholar 

  21. Zhu M, Li Y, Chen F, Zhu X, Dai J, Li Y, Yang Z, Yan X, Song J, Wang Y, Hitz E, Luo W, Lu M, Yang B, Hu L. Plasmonic wood for high-efficiency solar steam generation. Advanced Energy Materials, 2018, 8(4): 1701028

    Google Scholar 

  22. Khodasevych I E, Wang L, Mitchell A, Rosengarten G. Micro-and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 2015, 3(7): 852–881

    CAS  Google Scholar 

  23. Buller S, Strunk J. Nanostructure in energy conversion. Journal of Energy Chemistry, 2016, 25(2): 171–190

    Google Scholar 

  24. Zhang N, Han C, Fu X, Xu Y J. Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: exerting plasmonic effect and beyond. Chem, 2018, 4(8): 1832–1861

    CAS  Google Scholar 

  25. Wang S J, Su D, Zhang T. Research progress of surface plasmons mediated photothermal effects. Acta Physica Sinica, 2019, 68(14): 144401

    Google Scholar 

  26. Thuillier G, Hersé M, Labs D, Foujols T, Peetermans W, Gillotay D, Simon P C, Mandel H. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Physics, 2003, 214(1): 1–22

    Google Scholar 

  27. Thuillier G, Hersé M, Simon P C, Labs D, Mandel H, Gillotay D, Petermans W. The absolute solar spectral irradiance from 200 to 2500nm as measured by the SOLSPEC spectrometer with the ATLAS and EURECA missions. Physics and Chemistry of the Earth. Part C: Solar-terrestrial and Planetary Science, 2000, 25(5–6): 375–377

    Google Scholar 

  28. Deng Z, Zhou J, Miao L, Liu C, Peng Y, Sun L, Tanemura S. The emergence of solar thermal utilization: solar-driven steam generation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 7691–7709

    CAS  Google Scholar 

  29. Dao V D, Choi H S. Carbon-based sunlight absorbers in solar-driven steam generation devices. Global Challenges, 2018, 2(2): 1700094

    PubMed  PubMed Central  Google Scholar 

  30. Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089

    CAS  Google Scholar 

  31. Wang X, Wang F, Sang Y, Liu H. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Advanced Energy Materials, 2017, 7(23): 1700473

    Google Scholar 

  32. Zhang T, Wang S J, Zhang X Y, Su D, Yang Y, Wu J Y, Xu Y Y, Zhao N. Progress in the utilization efficiency improvement of hot carriers in plasmon-mediated heterostructure photocatalysis. Applied Sciences (Basel, Switzerland), 2019, 9(10): 2093

    CAS  Google Scholar 

  33. Li W, Valentine J G. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics, 2017, 6(1): 177–191

    Google Scholar 

  34. Ji C, Lee K T, Xu T, Zhou J, Park H J, Guo L J. Engineering light at the nanoscale: structural color filters and broadband perfect absorbers. Advanced Optical Materials, 2017, 5(20): 1700368

    Google Scholar 

  35. Baranov D G, Xiao Y, Nechepurenko I A, Krasnok A, Alù A, Kats M A. Nanophotonic engineering of far-field thermal emitters. Nature Materials, 2019, 18(9): 920–930

    CAS  PubMed  Google Scholar 

  36. Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z. Broadband metamaterial absorbers. Advanced Optical Materials, 2019, 7(3): 1800995

    Google Scholar 

  37. Kim J U, Lee S, Kang S J, Kim T. Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion. Nanoscale, 2018, 10(46): 21555–21574

    CAS  PubMed  Google Scholar 

  38. Gao M, Zhu L, Peh C K, Ho J W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019, 12(3): 841–864

    CAS  Google Scholar 

  39. Wang Y, Xu N, Li D, Zhu J. Thermal properties of two dimensional layered materials. Advanced Functional Materials, 2017, 27(19): 1604134

    Google Scholar 

  40. Long R, Li Y, Song L, Xiong Y. Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small, 2015, 11(32): 3873–3889

    CAS  PubMed  Google Scholar 

  41. Cushing S K, Wu N. Progress and perspectives of plasmonenhanced solar energy conversion. Journal of Physical Chemistry Letters, 2016, 7(4): 666–675

    CAS  Google Scholar 

  42. Sharma G, Thakur B, Naushad M, Kumar A, Stadler F J, Alfadul S M, Mola G T. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environmental Chemistry Letters, 2018, 16(1): 113–146

    CAS  Google Scholar 

  43. Fan R H, Xiong B, Peng R W, Wang M. Constructing metastructures with broadband electromagnetic functionality. Advanced Materials, 2019, DOI: https://doi.org/10.1002/adma.201904646

  44. Ghobadi A, Hajian H, Butun B, Ozbay E. Strong interference in planar, multilayer perfect absorbers: achieving high-operational performances in visible and near-infrared regimes. IEEE Nanotechnology Magazine, 2019, 13(4): 1–16

    Google Scholar 

  45. Li Y, Jin X, Zheng Y, Li W, Zheng F, Wang W, Lin T, Zhu Z. Tunable water delivery in carbon-coated fabrics for high efficiency solar vapor generation. ACS Applied Materials & Interfaces, 2019, 11(50): 46938–46946

    CAS  Google Scholar 

  46. Liu Z, Song H, Ji D, Li C, Cheney A, Liu Y, Zhang N, Zeng X, Chen B, Gao J, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Challenges, 2017, 1(2): 1600003

    PubMed  PubMed Central  Google Scholar 

  47. Li H, Wu L, Zhang H, Dai W, Hao J, Wu H, Ren F, Liu C. Self-assembly of carbon black/AAO templates on nanoporous Si for broadband infrared absorption. ACS Applied Materials & Interfaces, 2020, 12(3): 4081–4087

    CAS  Google Scholar 

  48. Yang Z P, Ci L, Bur J A, Lin S Y, Ajayan P M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Letters, 2008, 8(2): 446–451

    CAS  PubMed  Google Scholar 

  49. Li Y, Gao T, Yang Z, Chen C, Luo W, Song J, Hitz E, Jia C, Zhou Y, Liu B, Yang B, Hu L. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Advanced Materials, 2017, 29(26): 1700981

    Google Scholar 

  50. Lamy-Mendes A, Silva R F, Durães L. Advances in carbon nanostructure-silica aerogel composites: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(4): 1340–1369

    CAS  Google Scholar 

  51. Yang F, Zhang Y, Yang X, Zhong M, Yi Z, Liu X, Kang X, Luo J, Li J, Wang C Y, et al. Enhanced photothermal effect in ultralowdensity carbon aerogels with microporous structures for facile optical ignition applications. ACS Applied Materials & Interfaces, 2019, 11(7): 7250–7260

    CAS  Google Scholar 

  52. Sun W, Du A, Feng Y, Shen J, Huang S, Tang J, Zhou B. Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano, 2016, 10(10): 9123–9128

    CAS  PubMed  Google Scholar 

  53. Xie P, Sun W, Liu Y, Du A, Zhang Z, Wu G, Fan R. Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon, 2018, 129: 598–606

    CAS  Google Scholar 

  54. Mu P, Zhang Z, Bai W, He J, Sun H, Zhu Z, Liang W, Li A. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Advanced Energy Materials, 2019, 9(1): 1802158

    Google Scholar 

  55. Anguita J V, Ahmad M, Haq S, Allam J P, Silva S R. Ultrabroadband light trapping using nanotextured decoupled graphene multilayers. Science Advances, 2016, 2(2): e1501238

    PubMed  PubMed Central  Google Scholar 

  56. Wang Z, Ye Q, Liang X, Xu J, Chang C, Song C, Shang W, Wu J, Tao P, Deng T. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(31): 16359–16368

    CAS  Google Scholar 

  57. Liu K K, Jiang Q, Tadepalli S, Raliya R, Biswas P, Naik R R, Singamaneni S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017, 9(8): 7675–7681

    CAS  Google Scholar 

  58. Liu F, Wang L, Bradley R, Zhao B, Wu W. Highly efficient solar seawater desalination with environmentally friendly hierarchical porous carbons derived from halogen-containing polymers. RSC Advances, 2019, 9(50): 29414–29423

    CAS  Google Scholar 

  59. Liu F, Zhao B, Wu W, Yang H, Ning Y, Lai Y, Bradley R. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Advanced Functional Materials, 2018, 28(47): 1803266

    Google Scholar 

  60. Guo J, Li D, Zhao H, Zou W, Yang Z, Qian Z, Yang S, Yang M, Zhao N, Xu J. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Applied Materials & Interfaces, 2019, 11(17): 15945–15951

    CAS  Google Scholar 

  61. Guo J, Li D, Zhao H, Zou W, Yang Z, Qian Z, Yang S, Yang M, Zhao N, Xu J. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Applied Materials & Interfaces, 2019, 11(17): 15945–15951

    CAS  Google Scholar 

  62. Wang L L, Zhu G, Wei Y, Zeng J, Yu X, Li Q, Xie H. Integrating nitrogen-doped graphitic carbon with Au nanoparticles for excellent solar energy absorption properties. Solar Energy Materials and Solar Cells, 2018, 184: 1–8

    CAS  Google Scholar 

  63. Liu F, Lai Y, Zhao B, Bradley R, Wu W. Photothermal materials for efficient solar powered steam generation. Frontiers of Chemical Science and Engineering, 2019, 13(4): 636–653

    CAS  Google Scholar 

  64. Bao Q, Loh K P. Graphene photonics, plasmonics and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694

    CAS  PubMed  Google Scholar 

  65. Mo Z, Xu H, Chen Z, She X, Song Y, Wu J, Yan P, Xu L, Lei Y, Yuan S, Li H. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Applied Catalysis B: Environmental, 2018, 225: 154–161

    CAS  Google Scholar 

  66. Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2(4): e1501227

    PubMed  PubMed Central  Google Scholar 

  67. Zhang X Y, Xu J J, Wu J Y, Shan F, Ma X D, Chen Y Z, Zhang T. Seeds triggered massive synthesis and multi-step room temperature post-processing of silver nanoink-application for paper electronics. RSC Advances, 2017, 7(1): 8–19

    CAS  Google Scholar 

  68. Chan G H, Zhao J, Hicks E M, Schatz G C, Van Duyne R P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Letters, 2007, 7(7): 1947–1952

    CAS  Google Scholar 

  69. Zhang X Y, Zhou H L, Shan F, Xue X M, Su D, Liu Y R, Chen Y Z, Wu J Y, Zhang T. Synthesis of silver nanoplate based two-dimension plasmonic platform from 25 nm to 40 µm: growth mechanism and optical characteristic investigation in situ. RSC Advances, 2017, 7(88): 55680–55690

    CAS  Google Scholar 

  70. Sau T K, Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004, 20(15): 6414–6420

    CAS  PubMed  Google Scholar 

  71. Zhou Y, Yu S H, Wang C Y, Li X G, Zhu Y R, Chen Z Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials, 1999, 11(10): 850–852

    CAS  Google Scholar 

  72. Zhang X Y, Hu A, Zhang T, Lei W, Xue X J, Zhou Y, Duley W W. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano, 2011, 5 (11): 9082–9092

    CAS  PubMed  Google Scholar 

  73. Brown A M, Sundararaman R, Narang P, Goddard W A III, Atwater H A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano, 2016, 10(1): 957–966

    CAS  PubMed  Google Scholar 

  74. Hedayati M K, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula V S K, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Advanced Materials, 2011, 23(45): 5410–5414

    CAS  PubMed  Google Scholar 

  75. Zhang H, Guan C, Luo J, Yuan Y, Song N, Zhang Y, Fang J, Liu H. Facile film-nanoctahedron assembly route to plasmonic metamaterial absorbers at visible frequencies. ACS Applied Materials & Interfaces, 2019, 11(22): 20241–20248

    CAS  Google Scholar 

  76. Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Applied Materials & Interfaces, 2015, 7(8): 4962–4968

    CAS  Google Scholar 

  77. Meudt M, Jakob T, Polywka A, Stegers L, Kropp S, Runke S, Zang M, Clemens M, Görrn P. Plasmonic black metasurface by transfer printing. Advanced Materials Technologies, 2018, 3(11): 1800124

    Google Scholar 

  78. Berean K J, Sivan V, Khodasevych I, Boes A, Della Gaspera E, Field M R, Kalantar-Zadeh K, Mitchell A, Rosengarten G. Laser-induced dewetting for precise local generation of Au nanostruc-tures for tunable solar absorption. Advanced Optical Materials, 2016, 4(8): 1247–1254

    CAS  Google Scholar 

  79. Fan P, Wu H, Zhong M, Zhang H, Bai B, Jin G. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. Nanoscale, 2016, 8(30): 14617–14624

    CAS  PubMed  Google Scholar 

  80. Li Y, Li D, Zhou D, Chi C, Yang S, Huang B. Efficient, scalable, and high-temperature selective solar absorbers based on hybrid-strategy plasmonic metamaterials. Solar RRL, 2018, 2(8): 1800057

    Google Scholar 

  81. Yu W, Lu Y, Chen X, Xu H, Shao J, Chen X, Sun Y, Hao J, Dai N. Large-area, broadband, wide-angle plasmonic metasurface absorber for midwavelength infrared atmospheric transparency window. Advanced Optical Materials, 2019, 7(20): 1900841

    CAS  Google Scholar 

  82. Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104

    Google Scholar 

  83. Hedayati M K, Faupel F, Elbahri M. Tunable broadband plasmonic perfect absorber at visible frequency. Applied Physics. A, Materials Science & Processing, 2012, 109(4): 769–773

    CAS  Google Scholar 

  84. Matsumori K, Fujimura R. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions. Optics Letters, 2018, 43(12): 2981–2984

    CAS  PubMed  Google Scholar 

  85. Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403

    PubMed  Google Scholar 

  86. Lu Y, Dong W, Chen Z, Pors A, Wang Z, Bozhevolnyi S I. Gapplasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Scientific Reports, 2016, 6(1): 30650

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mulla B, Sabah C. Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics, 2016, 11(5): 1313–1321

    CAS  Google Scholar 

  88. Desiatov B, Goykhman I, Mazurski N, Shappir J, Khurgin J B, Levy U. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2015, 2(4): 335–338

    CAS  Google Scholar 

  89. Bae K, Kang G, Cho S K, Park W, Kim K, Padilla W J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Letters, 2012, 12(3): 1443–1447

    CAS  PubMed  Google Scholar 

  91. Wu D, Liu C, Liu Y, Yu L, Yu Z, Chen L, Ma R, Ye H. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Optics Letters, 2017, 42(3): 450–453

    CAS  PubMed  Google Scholar 

  92. Ho K H W, Shang A, Shi F, Lo T W, Yeung P H, Yu Y S, Zhang X, Wong K, Lei D Y. Plasmonic Au/TiO2-dumbbell-on-film nanocavities for high-efficiency hot-carrier generation and extraction. Advanced Functional Materials, 2018, 28(34): 1800383

    Google Scholar 

  93. Zhang X Y, Shan F, Zhou H L, Su D, Xue X M, Wu J Y, Chen Y Z, Zhao N, Zhang T. Silver nanoplate aggregation based multifunctional black metal absorbers for localization, photothermic harnessing enhancement and omnidirectional light antireflection. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(5): 989–999

    CAS  Google Scholar 

  94. Shan F, Zhang X Y, Fu X C, Zhang L J, Su D, Wang S J, Wu J Y, Zhang T. Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes. Scientific Reports, 2017, 7(1): 6813

    PubMed  PubMed Central  Google Scholar 

  95. Zhang X Y, Zhang T, Zhu S Q, Wang L D, Liu X, Wang Q L, Song Y J. Fabrication and spectroscopic investigation of branched silver nanowires and nanomeshworks. Nanoscale Research Letters, 2012, 7(1): 596

    PubMed  PubMed Central  Google Scholar 

  96. Karampelas IH, Liu K, Alali F, Furlani E P. Plasmonic nanoframes for photothermal energy conversion. Journal of Physical Chemistry C, 2016, 120(13): 7256–7264

    CAS  Google Scholar 

  97. Gao M, Peh C K, Phan H T, Zhu L, Ho G W. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Advanced Energy Materials, 2018, 8(25): 1800711

    Google Scholar 

  98. Wang L D, Zhang T, Zhang X Y, Li R Z, Zhu S Q, Wang L N. Synthesis of ultra-thin gold nanosheets composed of steadily linked dense nanoparticle arrays using magnetron sputtering. Nanoscience and Nanotechnology Letters, 2013, 5(2): 257–260

    CAS  Google Scholar 

  99. Piragash R M K, Venkatesh A, Moorthy V H S. Wet-chemical etching: a novel nanofabrication route to prepare broadband random plasmonic metasurfaces. Plasmonics, 2019, 14(2): 365–374

    Google Scholar 

  100. Li M, Guler U, Li Y, Rea A, Tanyi E K, Kim Y, Noginov M A, Song Y, Boltasseva A, Shalaev V M, Kotov N A. Plasmonic biomimetic nanocomposite with spontaneous subwavelength structuring as broadband absorbers. ACS Energy Letters, 2018, 3 (7): 1578–1583

    CAS  Google Scholar 

  101. Chang C C, Nogan J, Yang Z P, Kort-Kamp W J M, Ross W, Luk T S, Dalvit D A R, Azad A K, Chen H T. Highly plasmonic titanium nitride by room-temperature sputtering. Scientific Reports, 2019, 9 (1): 15287

    PubMed  PubMed Central  Google Scholar 

  102. Nagarajan A, Vivek K, Shah M, Achanta V G, Gerini G. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration. Advanced Optical Materials, 2018, 6(16): 1800253

    Google Scholar 

  103. Kharitonov A, Kharintsev S. Tunable optical materials for multiresonant plasmonics: from TiN to TiON. Optical Materials Express, 2020, 10(2): 513–531

    CAS  Google Scholar 

  104. Bhattacharjee A, Ahmaruzzaman M. CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Advances, 2016, 6(47): 41348–41363

    CAS  Google Scholar 

  105. Yin X, Zhang Y, Guo Q, Cai X, Xiao J, Ding Z, Yang J. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Applied Materials & Interfaces, 2018, 10(13): 10998–11007

    CAS  Google Scholar 

  106. Devlin R C, Khorasaninejad M, Chen W T, Oh J, Capasso F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473–10478

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang S, Chen F, Ji R, Hou M, Yi F, Zheng W, Zhang T, Lu W. Large-area low-cost dielectric perfect absorber by one-step sputtering. Advanced Optical Materials, 2019, 7(9): 1801596

    Google Scholar 

  108. Han S, Shin J H, Jung P H, Lee H, Lee B J. Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Advanced Optical Materials, 2016, 4 (8): 1265–1273

    CAS  Google Scholar 

  109. Gan Q, Bartoli F J, Kafafi Z H. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Advanced Materials, 2013, 25(17): 2385–2396

    CAS  PubMed  Google Scholar 

  110. Song G, Yuan Y, Liu J, Liu Q, Zhang W, Fang J, Gu J, Ma D, Zhang D. Biomimetic superstructures assembled from Au nanostars and nanospheres for efficient solar evaporation. Advanced Sustainable Systems, 2019, 3(6): 1900003

    Google Scholar 

  111. Kiriarachchi H D, Awad F S, Hassan A A, Bobb J A, Lin A, El-Shall M S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale, 2018, 10(39): 18531–18539

    CAS  PubMed  Google Scholar 

  112. Wang K, Xing Z, Du M, Zhang S, Li Z, Pan K, Zhou W. Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flowerlike Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal-photocatalytic performance. Catalysis Science & Technology, 2019, 9(23): 6714–6722

    CAS  Google Scholar 

  113. Dong W, Qiu Y, Yang J, Simpson R E, Cao T. Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings. Journal of Physical Chemistry C, 2016, 120(23): 12713–12722

    CAS  Google Scholar 

  114. Wang M, Zhang J, Wang P, Li C, Xu X, Jin Y. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Research, 2018, 11(7): 3854–3863

    CAS  Google Scholar 

  115. Wang P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089

    CAS  Google Scholar 

  116. Liu Y, Lou J, Ni M, Song C, Wu J, Dasgupta N P, Tao P, Shang W, Deng T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779

    CAS  Google Scholar 

  117. Yang X, Wang D. Photocatalysis: from fundamental principles to materials and applications. ACS Applied Energy Materials, 2018, 1 (12): 6657–6693

    CAS  Google Scholar 

  118. Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 2017, 355(6329): 1062–1066

    CAS  PubMed  Google Scholar 

  119. Mitridis E, Schutzius T M, Sicher A, Hail C U, Eghlidi H, Poulikakos D. Metasurfaces leveraging solar energy for icephobicity. ACS Nano, 2018, 12(7): 7009–7017

    CAS  PubMed  Google Scholar 

  120. Huang J, Liu C, Zhu Y, Masala S, Alarousu E, Han Y, Fratalocchi A. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnology, 2016, 11(1): 60121

    Google Scholar 

  121. Ni G, Li G, Boriskina S V, Li H, Yang W, Zhang T J, Chen G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016, 1(9): 16126

    CAS  Google Scholar 

  122. Li J, Du M, Lv G, Zhou L, Li X, Bertoluzzi L, Liu C, Zhu S, Zhu J. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Advanced Materials, 2018, 30(49): 1805159

    Google Scholar 

  123. Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, Zhu J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 2017, 29(5): 1604031

    Google Scholar 

  124. Li Y, Gao T, Yang Z, Chen C, Kuang Y, Song J, Jia C, Hitz E M, Yang B, Hu L. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy, 2017, 41: 201–209

    CAS  Google Scholar 

  125. Xu N, Hu X, Xu W, Li X, Zhou L, Zhu S, Zhu J. Mushrooms as efficient solar steam-generation devices. Advanced Materials, 2017, 29(28): 1606762

    Google Scholar 

  126. Gao M, Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160

    CAS  Google Scholar 

  127. Wang X, He Y, Liu X, Cheng G, Zhu J. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Applied Energy, 2017, 195: 414–425

    CAS  Google Scholar 

  128. Li Y, Lin C, Zhou D, An Y, Li D, Chi C, Huang H, Yang S, Tso C Y, Chao C Y H, Huang B. Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy, 2019, 64: 103947

    CAS  Google Scholar 

  129. Dongare P D, Alabastri A, Neumann O, Nordlander P, Halas N J. Solar thermal desalination as a nonlinear optical process. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(27): 13182–13187

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Shi L, He Y, Huang Y, Jiang B. Recyclable Fe3O4@ CNT nanoparticles for high-efficiency solar vapor generation. Energy Conversion and Management, 2017, 149: 401–408

    CAS  Google Scholar 

  131. Wang X, Ou G, Wang N, Wu H. Graphene-based recyclable photoabsorbers for high-efficiency seawater desalination. ACS Applied Materials & Interfaces, 2016, 8(14): 9194–9199

    CAS  Google Scholar 

  132. Lang X, Chen X, Zhao J. Heterogeneous visible light photo-catalysis for selective organic transformations. Chemical Society Reviews, 2014, 43(1): 473–486

    CAS  PubMed  Google Scholar 

  133. Aslam U, Rao V G, Chavez S, Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nature Catalysis, 2018, 1(9): 656–665

    Google Scholar 

  134. Zheng Z, Xie W, Huang B, Dai Y. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(69): 18322–18333

    CAS  Google Scholar 

  135. Ghobadi T G U, Ghobadi A, Ozbay E, Karadas F. Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting. ChemPhotoChem, 2018, 2(3): 161–182

    CAS  Google Scholar 

  136. Xiao Q, Connell T U, Cadusch J J, Roberts A, Chesman A S R, Gómez D E. Hot-carrier organic synthesis via the near-perfect absorption of light. ACS Catalysis, 2018, 8(11): 10331–10339

    CAS  Google Scholar 

  137. Naldoni A, Guler U, Wang Z, Marelli M, Malara F, Meng X, Besteiro L V, Govorov A O, Kildishev A V, Boltasseva A, Shalaev V M. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Advanced Optical Materials, 2017, 5(15): 1601031

    Google Scholar 

  138. Li X, Shang J, Wang Z. Intelligent materials: a review of applications in 4D printing. Assembly Automation, 2017, 37(2): 170–185

    Google Scholar 

  139. Kreder M J, Alvarenga J, Kim P, Aizenberg J. Design ofanti-icing surfaces: smooth, textured or slippery? Nature Reviews. Materials, 2016, 1(1): 1–15

    Google Scholar 

  140. Dash S, de Ruiter J, Varanasi K K. Photothermal trap utilizing solar illumination for ice mitigation. Science Advances, 2018, 4(8): eaat0127

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang Z, Han X, Lee H K, Phan-Quang G C, Koh C S L, Lay C L, Lee Y H, Miao Y E, Liu T, Phang I Y, Ling X Y. Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. Nanoscale, 2018, 10 (34): 16005–16012

    CAS  PubMed  Google Scholar 

  142. Barho F B, Gonzalez-Posada F, Bomers M, Mezy A, Cerutti L, Taliercio T. Surface-enhanced thermal emission spectroscopy with perfect absorber metasurfaces. ACS Photonics, 2019, 6(6): 1506–1514

    CAS  Google Scholar 

  143. Chandrashekara M. Experimental analysis of high temperature solar selective coated box type receiver for desalination. International Journal of Ambient Energy, 2020, DOI: https://doi.org/10.1080/01430750.2020.1718752

  144. Li Y, Choi S S, Yang C. Dish-Stirling solar power plants: Modeling, analysis, and control of receiver temperature. IEEE Transactions on Sustainable Energy, 2014, 5(2): 398–407

    Google Scholar 

Download references

Acknowledgements

This work is supported by Ministry of Science and Technology of the People’s Republic of China under Grant Number 2017YFA0205800, the National Natural Science Foundation of China (Grant Nos. 61875241, 11734005) and the Fundamental Research Funds for the Central Universities, Southeast University (Grant Nos. 2242018k1G020, 2242019k1G034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, SJ., Zhang, XY. et al. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization. Front. Chem. Sci. Eng. 15, 35–48 (2021). https://doi.org/10.1007/s11705-020-1937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1937-6

Keywords

Navigation