Skip to main content
Log in

Presumed Joint-PDF Modelling for Turbulent Stratified Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Turbulence–chemistry interaction models such as the conditional moment closure and various flamelet models require a presumed Probability Density Function (PDF) model of the conditioning variables. In turbulent stratified flames, a joint-PDF model for a reaction progress variable and the mixture fraction is required. The joint-PDF is often modelled by two beta functions using the first and second moments of the two conditioning variables. In this work, the performance of a joint-PDF model based on the flamelet PDF approach is compared to the double beta-PDF model. The conditional PDF of the reaction progress variable conditioned on mixture fraction is modelled with the flamelet PDF. Unlike the beta PDF, the flamelet functional form for the conditional PDF varies with the local mixture fraction. The two PDF models are coupled with a two-dimensional premixed flamelet-generated manifold chemistry model. Two stratified flames of the Cambridge–Sandia bluff-body burner are simulated using a Reynolds-Averaged Navier–Stokes (RANS) approach. The results indicate that the flamelet PDF model has a superior, albeit marginal, predictions of the temperature, major and minor species mass fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

a :

Strain rate

\(c^*\) :

Sample space variable for normalized reaction progress variable

\(C_{\delta _0}\), \(C_{\nabla }\), \(C_{\delta _1}\), \(c_1\) and \(c_2\) :

Flamelet PDF model constants

\(C_{\varepsilon _z}\) :

Mixture fraction dissipation rate model constant

\(C_3\) and \(C_4\) :

Progress variable dissipation rate model constants

f :

Interior distribution in the flamelet PDF

H :

Heaviside function

\(\widetilde{k}\) :

Favre-averaged turbulent kinetic energy

Ka :

Karlovitz number

P :

Probability density function

\(Sc_t\) :

Turbulent Schmidt number

\(S_L\) :

Laminar flame speed

T :

Temperature

\(u_i\) :

Velocity field

\(Y_c\) :

Non-normalized reaction progress variable

\(\widetilde{Y}_c\) :

Favre-averaged non-normalized reaction progress variable

\(\widetilde{Y}_{c_v}\) :

Non-normalized reaction progress variable variance

\(Y_k\) :

Mass fraction of the kth-species

\(z^*\) :

Sample space variable for mixture fraction

\(\widetilde{z}\) :

Favre-averaged mixture fraction

\(\widetilde{z}_v\) :

Mixture fraction variance

\(\beta _\varepsilon\) :

Progress variable dissipation rate model constant

\(\delta\) :

Dirac delta function

\(\delta _L\) :

Laminar flame thickness

\(\delta _z\) :

Zeldovitch thickness

\(\varGamma\) :

Gamma function

\(\widetilde{\varepsilon }\) :

Favre-averaged turbulent dissipation rate

\(\widetilde{\varepsilon }_z\) :

Favre-averaged mixture fraction dissipation rate

\(\widetilde{\varepsilon }_{Y_c}\) :

Progress variable dissipation rate

\(\eta\) :

Kolmogrov length scale

\(\mu _t\) :

Turbulent viscosity

\(\rho\) :

Density

\(\varSigma (c^*)\) :

Conditional flame surface density

\(\tau\) :

Heat release parameter

\(\phi\) :

Equivalence ratio

\(\dot{\omega }_k\) :

Production rate of the kth-species

References

  • Amzin, S., Swaminathan, N.: Computations of turbulent lean premixed combustion using conditional moment closure. Combust. Theor. Model. 17(6), 1125–1153 (2013)

    Article  MathSciNet  Google Scholar 

  • Apeloig, J., Gautier, P., Salaün, E., Barviau, B., Godard, G., Hochgreb, S., Grisch, F.: PLIF measurements of nitric oxide and hydroxyl radicals distributions in swirled stratified premixed flames. In: 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics. Lisbon, Portugal (2016)

  • Auzillon, P., Gicquel, O., Darabiha, N., Veynante, D., Fiorina, B.: A filtered tabulated chemistry model for les of stratified flames. Combust. Flame 159(8), 2704–2717 (2012)

    Article  Google Scholar 

  • Bilger, R.W.: Conditional moment closure for turbulent reacting flow. Phys. Fluids 5, 436–444 (1993)

    Article  MATH  Google Scholar 

  • Bradley, D., Kwa, L.K., Lau, A.K.C., Missaghi, M., Chin, S.B.: Laminar flamelet modeling of recirculating premixed methane and propane-air combustion. Combust. Flame 71, 109–122 (1988)

    Article  Google Scholar 

  • Brauner, T., Jones, W., Marquis, A.: LES of the Cambridge stratified swirl burner using a sub-grid pdf approach. Flow Turbul. Combust. 96(4), 965–985 (2016)

    Article  Google Scholar 

  • Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astronaut. 4(3), 291–319 (1977)

    Article  Google Scholar 

  • Bray, K., Domingo, P., Vervisch, L.: Role of the progress variable in models for partially premixed turbulent combustion. Combust. Flame 141(4), 431–437 (2005)

    Article  Google Scholar 

  • Bray, K.N.C., Champion, M., Libby, P.A., Swaminathan, N.: Finite rate chemistry and presumed PDF models for premixed turbulent combustion. Combust. Flame 146, 665–673 (2006)

    Article  Google Scholar 

  • Bushe, W.K., Steiner, H.: Conditional moment closure for large eddy simulation of non-premixed turbulent reacting flows. Phys. Fluids 11, 1896–1906 (1999)

    Article  MATH  Google Scholar 

  • Chen, Z., Ruan, S., Swaminathan, N.: Large Eddy simulation of flame edge evolution in a spark-ignited methane-air jet. Proc. Combust. Inst. 36(2), 1645–1652 (2017)

    Article  Google Scholar 

  • Chen, Z.X., Langella, I., Swaminathan, N., Stöhr, M., Meier, W., Kolla, H.: Large eddy simulation of a dual swirl gas turbine combustor: flame/flow structures and stabilisation under thermoacoustically stable and unstable conditions. Combust. Flame 203, 279–300 (2019)

    Article  Google Scholar 

  • Dally, B., Fletcher, D., Masri, A.: Flow and mixing fields of turbulent bluff-body jets and flames. Combust. Theor. Model. 2(2), 193–219 (1998)

    Article  MATH  Google Scholar 

  • Darbyshire, O.R., Swaminathan, N.: A presumed joint PDF model for turbulent combustion with varying equivalence ratio. Combust. Sci. Technol. 184(12), 2036–2067 (2012)

    Article  Google Scholar 

  • Domingo, P., Vervisch, L., Bray, K.: Partially premixed flamelets in les of nonpremixed turbulent combustion. Combust. Theor. Model. 6(4), 529–551 (2002)

    Article  Google Scholar 

  • Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143, 566–586 (2005)

    Article  Google Scholar 

  • Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)

    Article  Google Scholar 

  • Donini, A., Bastiaans, R.J.M., Oijen, J.A., Goey, L.P.H.: A 5-D implementation of FGM for the large Eddy simulation of a stratified swirled flame with heat loss in a gas turbine combustor. Flow Turbul. Combust. 98(3), 887–922 (2017)

    Article  Google Scholar 

  • Dovizio, D., Devaud, C.B.: Doubly conditional source-term estimation (DCSE) for the modelling of turbulent stratified V-shaped flame. Combust. Flame 172, 79–93 (2016)

    Article  Google Scholar 

  • Dovizio, D., Salehi, M.M., Devaud, C.B.: RANS simulation of a turbulent premixed bluff body flame using conditional source-term estimation. Combust. Theor. Model. 17(5), 935–959 (2013)

    Article  MathSciNet  Google Scholar 

  • Dovizio, D., Labahn, J.W., Devaud, C.B.: Doubly conditional source-term estimation (dcse) applied to a series of lifted turbulent jet flames in cold air. Combust. Flame 162(5), 1976–1986 (2015)

    Article  Google Scholar 

  • Dovizio, D., Debbagh, A., Devaud, C.: RANS simulations of a series of turbulent V-shaped flames using conditional source-term estimation. Flow Turbul. Combust. 96(4), 891–919 (2016)

    Article  Google Scholar 

  • Euler, M., Zhou, R., Hochgreb, S., Dreizler, A.: Temperature measurements of the bluff body surface of a swirl burner using phosphor thermometry. Combust. Flame 161(11), 2842–2848 (2014)

    Article  Google Scholar 

  • Farrace, D., Chung, K., Pandurangi, S.S., Wright, Y.M., Boulouchos, K., Swaminathan, N.: Unstructured LES-CMC modelling of turbulent premixed bluff body flames close to blow-off. Proc. Combust. Inst. 36(2), 1977–1985 (2017)

    Article  Google Scholar 

  • Farrace, D., Chung, K., Bolla, M., Wright, Y.M., Boulouchos, K., Mastorakos, E.: A LES-CMC formulation for premixed flames including differential diffusion. Combust. Theor. Model. 22(3), 411–431 (2018)

    Article  MathSciNet  Google Scholar 

  • Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ildm. Combust. Theor. Model. 7, 449–470 (2003)

    Article  Google Scholar 

  • Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using fpi flamelet tabulation. Combust. Flame 140(3), 147–160 (2005)

    Article  Google Scholar 

  • Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: A filtered tabulated chemistry model for les of premixed combustion. Combust. Flame 157, 465–475 (2010)

    Article  Google Scholar 

  • Floyd, J., Kempf, A.M., Kronenburg, A., Ram, R.H.: A simple model for the filtered density function for passive scalar combustion LES. Combust. Theor. Model. 13(4), 559–588 (2009)

    Article  MATH  Google Scholar 

  • Gicquel, O., Darabiha, N., Thévenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)

    Article  Google Scholar 

  • Goodwin, D.G.: Cantera: Object-oriented software for reacting flows. http://www.cantera.org

  • Gruhlke, P., Proch, F., Kempf, A.M., Dederichs, S., Beck, C., Mahiques, E.I.: Prediction of CO and NOx pollutants in a stratified bluff body burner. J. Eng. Gas Turbines Power 140(10), (2018)

  • Hansinger, M., Pfitzner, M., Klein, M.: Statistical analysis and verification of a new premixed combustion model with DNS data. Combust. Sci. Technol. 192, 2093–2114 (2020)

    Article  Google Scholar 

  • Hendra, G.R., Bushe, W.K.: The uniform conditional state model for turbulent reacting flows. Combust. Flame 205, 484–505 (2019)

    Article  Google Scholar 

  • Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combust. Flame 155(1), 70–89 (2008)

    Article  MATH  Google Scholar 

  • Ihme, M., Pitsch, H.: Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation. Phys. Fluids 20(5), 055110 (2008)

    Article  MATH  Google Scholar 

  • Janicka, J., Kollmann, W.: A two-variables formalism for the treatment of chemical reactions in turbulent H2-Air diffusion flames. In: Symposium (International) on Combustion vol. 17, no. 1, pp. 421–430 (1979)

  • Jha, P.K.: Modelling detailed-chemistry effects on turbulent diffusion flames using a parallel solution-adaptive scheme. Ph.D. thesis, University of Toronto (2011)

  • Jha, P.K., Groth, C.P.: Tabulated chemistry approaches for laminar flames: evaluation of flame-prolongation of ILDM and flamelet methods. Combust. Theor. Model. 16(1), 31–57 (2012)

    Article  MATH  Google Scholar 

  • Jin, B.: Conditional source-term estimation methods for turbulent reacting flows. Ph.D. thesis, University of Brithish Columbia, Canada (2007)

  • Jin, B., Grout, R., Bushe, W.K.: Conditional source-term estimation as a method for chemical closure in premixed turbulent reacting flow. Flow Turbul. Combust. 81(4), 563–582 (2008)

    Article  MATH  Google Scholar 

  • Kamal, M.M., Barlow, R.S., Hochgreb, S.: Conditional analysis of turbulent premixed and stratified flames on local equivalence ratio and progress of reaction. Combust. Flame 162(10), 3896–3913 (2015)

    Article  Google Scholar 

  • Kim, S.H.: On the conditional variance and covariance equations for second-order conditional moment closure. Phys. Fluids 14(6), 2011–2014 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, S.H., Huh, K.Y., Dally, B.: Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow. Proc. Combust. Inst. 30(1), 751–757 (2005)

    Article  Google Scholar 

  • Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energ. Combust. Sci. 25, 595–687 (1999)

    Article  Google Scholar 

  • Kolla, H., Rogerson, J., Chakraborty, N., Swaminathan, N.: Scalar dissipation modelling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)

    Article  Google Scholar 

  • Lecocq, G., Richard, S., Colin, O., Vervisch, L.: Hybrid presumed pdf and flame surface density appoaches for large-eddy simulation of premixed turbulent combustion. part 1: Formalism and simulation of a quasi-steady burner. Combust. Flame 158, 1201–1214 (2011)

    Article  Google Scholar 

  • Lecocq, G., Richard, S., Colin, O., Vervisch, L.: Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion. Part 2: Early flame development after sparking. Combust. Flame 158(6), 1215–1226 (2011)

    Article  Google Scholar 

  • Libby, P., Williams, F.: Turbulent Reacting Flows. Academic Press, London (1994)

    MATH  Google Scholar 

  • Libby, P.A., Williams, F.A.: A presumed PDF analysis of partially premixed turbulent combustion. Combust. Sci. Technol. 161(1), 351–390 (2000)

    Article  Google Scholar 

  • Libby, P.A., Bray, K.N.C., Moss, J.B.: Effects of finite reaction rate and molecular transport in premixed turbulent combustion. Combust. Flame 34, 285–301 (1979)

    Article  Google Scholar 

  • Lieuwen, T., Zinn, B.T.: The role of equivalence ratio oscillations in driving combustion instabilities in low NOx gas turbines. In: Symposium (International) on Combustion, vol. 27, no. 2, pp. 1809–1816 (1998). https://doi.org/10.1016/S0082-0784(98)80022-2

  • Lieuwen, T.C., Yang, V.: Gas Turbine Emissions. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  • Lipatnikov, A.N.: Stratified turbulent flames: recent advances in understanding the influence of mixture inhomogeneities on premixed combustion and modeling challenges. Prog. Energ. Combust. Sci. 62, 87–132 (2017)

    Article  Google Scholar 

  • Magnussen, B.F., Hjertager, B.H.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1979)

    Article  Google Scholar 

  • Malkeson, S.P., Chakraborty, N.: A priori direct numerical simulation assessment of algebraic models of variances and dissipation rates in the context of reynolds-averaged Navier–Stokes simulations for low Damköhler number partially premixed combustion. Combust. Sci. Technol. 182(8), 960–999 (2010)

    Article  Google Scholar 

  • Martin, S.M., Kramlich, J.C., Kosaly, G., Riley, J.J.: The premixed conditional moment closure method applied to idealized lean premixed gas turbine combutors. J. Eng. Gas Turb. Power Trans. ASME 125, 895–900 (2003)

    Article  Google Scholar 

  • Meares, S., Prasad, V.N., Magnotti, G., Barlow, R.S., Masri, A.R.: Stabilization of piloted turbulent flames with inhomogeneous inlets. Proc. Combust. Inst. 35(2), 1477–1484 (2015)

    Article  Google Scholar 

  • Moureau, V., Domingo, P., Vervisch, L.: From large-Eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modeling. Combust. Flame 158(7), 1340–1357 (2011)

    Article  Google Scholar 

  • Nambully, S., Domingo, P., Moureau, V., Vervisch, L.: A filtered-laminar-flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: formalism and application to a bluff-body burner with differential diffusion. Combust. Flame 161(7), 1756–1774 (2014)

    Article  Google Scholar 

  • Nambully, S., Domingo, P., Moureau, V., Vervisch, L.: A filtered-laminar-flame pdf sub-grid-scale closure for les of premixed turbulent flames: Ii. application to a stratified bluff-body burner. Combust. Flame 161(7), 1775–1791 (2014)

    Article  Google Scholar 

  • Nguyen, P.D., Vervisch, L., Subramanian, V., Domingo, P.: Multidimensional flamelet-generated manifolds for partially premixed combustion. Combust. Flame 157(1), 43–61 (2010)

    Article  Google Scholar 

  • Olbricht, C., Stein, O., Janicka, J., Van Oijen, J., Wysocki, S., Kempf, A.: LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry. Fuel 96, 100–107 (2012)

    Article  Google Scholar 

  • OpenFOAM: http://www.opencfd.co.uk/openfoam/ (2007)

  • Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energ. Combust. Sci. 10, 319–339 (1984)

    Article  Google Scholar 

  • Peters, N., Hocks, W., Mohiuddin, G.: Turbulent mean reaction rates in the limit of large activation energies. J. Fluid Mech. 110, 411–432 (1981)

    Article  MATH  Google Scholar 

  • Pfitzner, M.: A new analytic PDF for simulations of premixed turbulent combustion. Flow Turbul. Combust. (2020)

  • Poinsot, T., Veynanate, D.: Theoretical and Numerical Combustion, 2nd edn. R.T. Edwards, Flourtown (2005)

    Google Scholar 

  • Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energ. Combust. Sci. 11, 119–192 (1985)

    Article  Google Scholar 

  • Proch, F., Kempf, A.M.: Numerical analysis of the cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame 161(10), 2627–2646 (2014)

    Article  Google Scholar 

  • Proch, F., Domingo, P., Vervisch, L., Kempf, A.M.: Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry. Combust. Flame 180, 321–339 (2017)

    Article  Google Scholar 

  • Proch, F., Domingo, P., Vervisch, L., Kempf, A.M.: Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part II: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling. Combust. Flame 180, 340–350 (2017)

    Article  Google Scholar 

  • Ribert, G., Champion, M., Plion, P.: Modeling turbulent reactive flows with variable equivalence ratio: application to the calculation of a reactive shear layer. Combust. Sci. Technol. 176(5–6), 907–923 (2004)

    Article  Google Scholar 

  • Robin, V., Mura, A., Champion, M., Plion, P.: A multi-dirac presumed PDF model for turbulent reactive flows with variable equivalence ratio. Combust. Sci. Technol. 178(10–11), 1843–1870 (2006)

    Article  Google Scholar 

  • Robin, V., Mura, A., Champion, M., Degardin, O., Renou, B., Boukhalfa, M.: Experimental and numerical analysis of stratified turbulent V-shaped flames. Combust. Flame 153(1–2), 288–315 (2008)

    Article  Google Scholar 

  • Ruan, S., Swaminathan, N., Darbyshire, O.: Modelling of turbulent lifted jet flames using flamelets: a priori assessment and a posteriori validation. Combust. Theor. Model. 18(2), 295–329 (2014)

    Article  MathSciNet  Google Scholar 

  • Salehi, M.M., Bushe, W.K.: Presumed PDF modeling for RANS simulation of turbulent premixed flames. Combust. Theor. Model. 14, 381–403 (2010)

    Article  MATH  Google Scholar 

  • Salehi, M.M., Bushe, W.K., Daun, K.J.: Application of the conditional source-term estimation model for turbulence–chemistry interactions in a premixed flame. Combust. Theor. Model. 16(2), 301–320 (2012)

    Article  MATH  Google Scholar 

  • Salehi, M.M., Bushe, W.K., Shahbazian, N., Groth, C.P.T.: Modified laminar flamelet presumed probability density function for LES of premixed turbulent combustion. Proc. Combust. Inst. 34(1), 1203–1211 (2013)

    Article  Google Scholar 

  • Shahbazian, N., Salehi, M.M., Groth, C.P.T., Gulder, O.L., Bushe, W.K.: Performance of conditional source-term estimation model for LES of turbulent premixed flames in thin reaction zones regime. Proc. Combust. Inst. 35(2), 1367–1375 (2015)

    Article  Google Scholar 

  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V.J., Qin, Z.: GRI-MECH 2.11. Technical Report, http://www.me.berkeley.edu/gri_mech

  • Spalding, D.B.: Mixing and chemical reaction in steady confined turbulent flames. Proc. Combust. Inst. 13, 649–657 (1971)

    Article  Google Scholar 

  • Steiner, H., Bushe, W.K.: Large eddy simulation of a turbulent reacting jet with conditional source-term estimation. Phys. Fluids 13, 754–769 (2001)

    Article  MATH  Google Scholar 

  • Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: The structure of turbulent stratified and premixed methane/air flames I: non-swirling flows. Combust. Flame 159(9), 2896–2911 (2012)

    Article  Google Scholar 

  • Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: The structure of turbulent stratified and premixed methane/air flames II: swirling flows. Combust. Flame 159(9), 2912–2929 (2012)

    Article  Google Scholar 

  • Tsui, H.P., Kamal, M.M., Hochgreb, S., Bushe, W.K.: Direct comparison of PDF and scalar dissipation rates between LEM simulations and experiments for turbulent, premixed methane air flames. Combust. Flame 165, 208–222 (2016)

    Article  Google Scholar 

  • Turkeri, H., Zhao, X., Pope, S.B., Muradoglu, M.: Large eddy simulation/probability density function simulations of the Cambridge turbulent stratified flame series. Combust. Flame 199, 24–45 (2019)

    Article  Google Scholar 

  • van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161, 113–137 (2000)

    Article  Google Scholar 

  • Vervisch, L., Bidaux, E., Bray, K.N.C., Kollmann, W.: Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches. Phys. Fluids 7(10), 2496 (1998)

    Article  MATH  Google Scholar 

  • Vervisch, L., Hauguel, R., Domingo, P., Rullaud, M.: Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted non-premixed flame and RANS of jet-flame. J. Turbul. 5, 1–36 (2004)

    Article  Google Scholar 

  • Vreman, A.W., Albrecht, B.A., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153(3), 394–416 (2008)

    Article  Google Scholar 

  • Zhang, H., Ye, T., Wang, G., Tang, P., Liu, M.: Large eddy simulation of turbulent premixed swirling flames using dynamic thickened flame with tabulated detailed chemistry. Flow Turbul. Combust. 98(3), 841–885 (2017)

    Article  Google Scholar 

  • Zhao, F., Harrington, D.L., Lai, M.C.: Automotive gasoline direct-injection engines. In: Society of Automotive Engineers (2002)

  • Zhou, R., Balusamy, S., Sweeney, M.S., Barlow, R.S., Hochgreb, S.: Flow field measurements of a series of turbulent premixed and stratified methane/air flames. Combust. Flame 160(10), 2017–2028 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors much appreciate Prof. Simone Hochgreb for making the Cambridge–Sandia burner experimental data available to the combustion community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahdi Salehi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadimi, M., Atayizadeh, H. & Salehi, M.M. Presumed Joint-PDF Modelling for Turbulent Stratified Flames. Flow Turbulence Combust 107, 405–439 (2021). https://doi.org/10.1007/s10494-021-00241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00241-6

Keywords

Navigation