Skip to main content

Advertisement

Log in

Secreted Phosphoprotein 24 is a Biomarker of Mineral Metabolism

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The 24 kD form of secreted phosphoprotein (SPP-24), a cytokine-binding bone matrix protein with various truncated C-terminal products, is primarily synthesized by the liver. SPP-24 shares homology with fetuin-A, a potent vascular and soft tissue calcification inhibitor and SPP-24 is one component of calciprotein particles (CPPs), a circulating fetuin–mineral complex. The limited molecular evidence to date suggests that SPP-24 may also function as an inhibitor of bone formation and ectopic vascular calcification, potentially through bone morphogenic protein 2 (BMP-2) and Wnt-signaling mediated actions. The C-terminal products of SPP-24 bind to BMP-2 and attenuate BMP-2-induced bone formation. The aim of this study was to assess circulating SPP-24 in relation to kidney function and in concert with markers of mineral metabolism in humans. SPP-24 was measured in the serum of total of 192 subjects using ELISA-based measurements. Subjects were participants of one of two cohorts: (1) mGFR Cohort (n = 80) was participants of a study of measured GFR (mGFR) using inulin urinary clearance, recruited mostly from a chronic kidney disease clinic with low-range kidney function (eGFR 38.7 ± 25.0 mL/min/1.73 m2) and (2) CaMOS Cohort (n = 112) was a subset of randomly selected, community-dwelling participants of year 10 of the Canadian Multicentre Osteoporosis Study with eGFR in the normal range of 75.0 ± 15.9 mL/min/1.73 m2. In the combined cohort, the mean SPP-24 was 167.7 ± 101.1 ng/mL (range 33.4–633.6 ng/mL). The mean age was 66.5 ± 11.3, 57.1% female and mean eGFR (CKD-EPI) was 59.9 ± 27.0 mL/min/1.73 m2 (range 8–122 mL/min/1.73 m2). There was a strong inverse correlation between SPP-24 and eGFR (R = − 0.58, p < 0.001) that remained after adjustment for age. Following adjustment for age, eGFR, and sex, SPP-24 was significantly associated with phosphate (R = − 0.199), PTH (R = 0.298), and the Wnt-signaling inhibitor Dickkopf-related protein 1 (R = − 0.156). The results of this study indicate that SPP-24 is significantly altered by kidney function and is the first human data linking levels of SPP-24 to other biomarkers involved in mineral metabolism. Whether there is a role for circulating SPP-24 in bone formation and ectopic mineralization requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Murray SS, Wang JC, Duarte MEL et al (2015) The bone matrix protein secreted phosphoprotein 24 kD (Spp24): bone metabolism regulator and starting material for biotherapeutic materials. Histol Histopathol 30:531–537. https://doi.org/10.14670/HH-30.531

    Article  CAS  PubMed  Google Scholar 

  2. Price PA, Nguyen TMT, Williamson MK (2003) Biochemical characterization of the serum fetuin–mineral complex. J Biol Chem 278:22153–22160. https://doi.org/10.1074/jbc.M300739200

    Article  CAS  PubMed  Google Scholar 

  3. Price PA, Thomas GR, Pardini AW et al (2002) Discovery of a high molecular weight complex of calcium, phosphate, fetuin, and matrix γ-carboxyglutamic acid protein in the serum of etidronate-treated rats. J Biol Chem 277:3926–3934. https://doi.org/10.1074/jbc.M106366200

    Article  CAS  PubMed  Google Scholar 

  4. Jahnen-Dechent W, Smith ER (2020) Nature’s remedy to phosphate woes: calciprotein particles regulate systemic mineral metabolism. Kidney Int 97:648–651. https://doi.org/10.1016/j.kint.2019.12.018

    Article  CAS  PubMed  Google Scholar 

  5. Akiyama K, Miura Y, Hayashi H et al (2020) Calciprotein particles regulate fibroblast growth factor-23 expression in osteoblasts. Kidney Int 97:702–712. https://doi.org/10.1016/j.kint.2019.10.019

    Article  CAS  PubMed  Google Scholar 

  6. Brochmann EJ, Behnam K, Murray SS (2009) Bone morphogenetic protein–2 activity is regulated by secreted phosphoprotein–24 kd, an extracellular pseudoreceptor, the gene for which maps to a region of the human genome important for bone quality. Metabolism 58:644–650. https://doi.org/10.1016/j.metabol.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  7. Sintuu C, Murray SS, Behnam K et al (2008) Full-length bovine spp24 [spp24 (24-203)] inhibits BMP-2 induced bone formation. J Orthop Res 26:753–758. https://doi.org/10.1002/jor.20580

    Article  PubMed  Google Scholar 

  8. Zhao K-W, Murray SS, Murray EJB (2013) Secreted phosphoprotein-24 kDa (Spp24) attenuates BMP-2-stimulated Smad 1/5 phosphorylation and alkaline phosphatase induction and was purified in a protective complex with alpha2-macroglobulins from serum. J Cell Biochem 114:378–387. https://doi.org/10.1002/jcb.24376

    Article  CAS  PubMed  Google Scholar 

  9. Tian H, Li C-S, Scott TP et al (2015) Secreted phosphoprotein 24 kD inhibits nerve root inflammation induced by bone morphogenetic protein-2. Spine J 15:314–321. https://doi.org/10.1016/j.spinee.2014.09.021

    Article  PubMed  Google Scholar 

  10. Lee K-B, Murray SS, Duarte MEL et al (2011) Effects of the bone morphogenetic protein binding protein spp24 (secreted phosphoprotein 24 kD) on the growth of human lung cancer cells. J Orthop Res 29:1712–1718. https://doi.org/10.1002/jor.21383

    Article  CAS  PubMed  Google Scholar 

  11. Lao L, Shen J, Tian H et al (2017) Secreted phosphoprotein 24 kD (Spp24) inhibits growth of hepatocellular carcinoma in vivo. Environ Toxicol Pharmacol 51:51–55. https://doi.org/10.1016/j.etap.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  12. Li C-S, Tian H, Zou M et al (2015) Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2. Biochem Biophys Res Commun 466:167–172. https://doi.org/10.1016/j.bbrc.2015.08.124

    Article  CAS  PubMed  Google Scholar 

  13. Tian H, Bi X, Li C-S et al (2013) Secreted phosphoprotein 24 kD (Spp24) and Spp14 affect TGF-β induced bone formation differently. PLoS One. https://doi.org/10.1371/journal.pone.0072645

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sintuu C, Simon RJ, Miyazaki M et al (2011) Full-length spp24, but not its 18.5-kDa proteolytic fragment, inhibits bone-healing in a rodent model of spine fusion. JBJS 93:1022–1032. https://doi.org/10.2106/JBJS.J.00081

    Article  Google Scholar 

  15. Rong S, Zhao X, Jin X et al (2014) Vascular calcification in chronic kidney disease is induced by bone morphogenetic protein-2 via a mechanism involving the Wnt/β-catenin pathway. Cell Physiol Biochem 34:2049–2060. https://doi.org/10.1159/000366400

    Article  CAS  PubMed  Google Scholar 

  16. Dalfino G, Simone S, Porreca S et al (2010) Bone morphogenetic protein-2 may represent the molecular link between oxidative stress and vascular stiffness in chronic kidney disease. Atherosclerosis 211:418–423. https://doi.org/10.1016/j.atherosclerosis.2010.04.023

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Yang H-Y, Giachelli CM (2008) BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 199:271–277. https://doi.org/10.1016/j.atherosclerosis.2007.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yucheng Y, Bennett BJ, Xuping W et al (2010) Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res 107:485–494. https://doi.org/10.1161/CIRCRESAHA.110.219071

    Article  CAS  Google Scholar 

  19. Upur H, Chen Y, Kamilijiang M et al (2015) Identification of plasma protein markers common to patients with malignant tumour and Abnormal Savda in Uighur medicine: a prospective clinical study. BMC Complement Altern Med 15:9. https://doi.org/10.1186/s12906-015-0526-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wasinger VC, Yau Y, Duo X et al (2016) Low mass blood peptides discriminative of inflammatory bowel disease (IBD) severity: a quantitative proteomic perspective. Mol Cell Proteom 15:256–265. https://doi.org/10.1074/mcp.M115.055095

    Article  CAS  Google Scholar 

  21. Walser M, Davidson DG, Orloff J (1955) The renal clearance of alkali-stable inulin. J Clin Investig 34:1520–1523. https://doi.org/10.1172/JCI103204

    Article  CAS  PubMed  Google Scholar 

  22. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  Google Scholar 

  23. Shah AD, Hsiao EC, O’Donnell B et al (2015) Maternal hypercalcemia due to failure of 1,25-dihydroxyvitamin-D3 catabolism in a patient with CYP24A1 mutations. J Clin Endocrinol Metab 100:2832–2836. https://doi.org/10.1210/jc.2015-1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaufmann M, Gallagher JC, Peacock M et al (2014) Clinical utility of simultaneous quantitation of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J Clin Endocrinol Metab 99:2567–2574. https://doi.org/10.1210/jc.2013-4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adachi JD, Ioannidis G, Berger C et al (2001) The influence of osteoporotic fractures on health-related quality of life in community-dwelling men and women across Canada. Osteoporos Int 12:903–908. https://doi.org/10.1007/s001980170017

    Article  CAS  PubMed  Google Scholar 

  26. Tenenhouse A, Joseph L, Kreiger N et al (2000) Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 11:897–904. https://doi.org/10.1007/s001980070050

    Article  CAS  PubMed  Google Scholar 

  27. Kauppila L (1997) New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132:245–250. https://doi.org/10.1016/S0021-9150(97)00106-8

    Article  CAS  PubMed  Google Scholar 

  28. Greene-Finestone LS, Berger C, de Groh M et al (2011) 25-Hydroxyvitamin D in Canadian adults: biological, environmental, and behavioral correlates. Osteoporos Int 22:1389–1399. https://doi.org/10.1007/s00198-010-1362-7

    Article  CAS  PubMed  Google Scholar 

  29. Berger C, Almohareb O, Langsetmo L et al (2015) Characteristics of hyperparathyroid states in the Canadian multicentre osteoporosis study (CaMos) and relationship to skeletal markers. Clin Endocrinol 82:359–368. https://doi.org/10.1111/cen.12569

    Article  CAS  Google Scholar 

  30. La’ulu SL, Roberts WL (2010) Performance characteristics of six intact parathyroid hormone assays. Am J Clin Pathol 134:930–938. https://doi.org/10.1309/AJCPLGCZR7IPVHA7

    Article  CAS  PubMed  Google Scholar 

  31. Yu OHY, Richards B, Berger C et al (2017) The association between sclerostin and incident type 2 diabetes risk: a cohort study. Clin Endocrinol 86:520–525. https://doi.org/10.1111/cen.13300

    Article  CAS  Google Scholar 

  32. Wolf M (2010) Forging forward with 10 burning questions on FGF23 in kidney disease. JASN 21:1427–1435. https://doi.org/10.1681/ASN.2009121293

    Article  CAS  PubMed  Google Scholar 

  33. CKD-MBD Work Group (2017) KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral bone disorder (CKD-MBD). Kidney Int Suppl 7:1–59

    Article  Google Scholar 

  34. Evenepoel P, D’Haese P, Brandenburg V (2015) Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int 88:235–240

    Article  CAS  Google Scholar 

  35. Kroll MH (2000) Parathyroid hormone temporal effects on bone formation and resorption. Bull Math Biol 62:163–188. https://doi.org/10.1006/bulm.1999.0146

    Article  CAS  PubMed  Google Scholar 

  36. Kulkarni NH, Halladay DL, Miles RR et al (2005) Effects of parathyroid hormone on Wnt signaling pathway in bone. J Cell Biochem 95:1178–1190. https://doi.org/10.1002/jcb.20506

    Article  CAS  PubMed  Google Scholar 

  37. Björklund P, Åkerström G, Westin G (2007) Activated β-catenin in the novel human parathyroid tumor cell line sHPT-1. Biochem Biophys Res Commun 352:532–536. https://doi.org/10.1016/j.bbrc.2006.11.056

    Article  CAS  PubMed  Google Scholar 

  38. Behets GJ, Viaene L, Meijers B et al (2017) Circulating levels of sclerostin but not DKK1 associate with laboratory parameters of CKD-MBD. PLoS One 12:e0176411. https://doi.org/10.1371/journal.pone.0176411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Voorzanger-Rousselot N, Goehrig D, Facon T et al (2009) Platelet is a major contributor to circulating levels of Dickkopf-1: clinical implications in patients with multiple myeloma. Br J Haematol 145:264–266. https://doi.org/10.1111/j.1365-2141.2009.07587.x

    Article  CAS  PubMed  Google Scholar 

  40. Miura Y, Iwazu Y, Shiizaki K et al (2018) Identification and quantification of plasma calciprotein particles with distinct physical properties in patients with chronic kidney disease. Sci Rep 8:1256. https://doi.org/10.1038/s41598-018-19677-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Delgado-Calle J, Sato AY, Bellido T (2017) Role and mechanism of action of sclerostin in bone. Bone 96:29–37. https://doi.org/10.1016/j.bone.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  42. MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. https://doi.org/10.1016/j.devcel.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff of the Kingston CaMOS center for obtaining the demographic and radiological data from the study subjects in the CaMOS Cohort. Also, they thank Claudie Berger of the coordinating CaMOS office at McGill University (Montreal), for facilitating access to the relevant biochemical data in the central CaMOS database.

Funding

Funding was provided by CaMOS, CIHR (Grant Nos. 201003MOP, 201711CGV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel M. Holden.

Ethics declarations

Conflict of interest

Mandy E. Turner, Christine A. White, Sarah M. Taylor, Kathryn Neville, Karen Rees-Milton, Wilma M. Hopman, Michael A. Adams, Tassos Anastassiades, Rachel M. Holden declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Informed consent was obtained from all participants and both human and animal rights studies were conducted according to the Declaration of Helsinki and approved by the Queen’s University and Affiliated Teaching Hospitals Research Ethics Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, M.E., White, C.A., Taylor, S.M. et al. Secreted Phosphoprotein 24 is a Biomarker of Mineral Metabolism. Calcif Tissue Int 108, 354–363 (2021). https://doi.org/10.1007/s00223-020-00783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00783-3

Keywords

Navigation