Volume 226, 2021

Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing

Abstract

Organic aerosols, a major constituent of fine particulate mass in megacities, can be directly emitted or formed from secondary processing of biogenic and anthropogenic volatile organic compound emissions. The complexity of volatile organic compound emission sources, speciation and oxidation pathways leads to uncertainties in the key sources and chemistry leading to formation of organic aerosol in urban areas. Historically, online measurements of organic aerosol composition have been unable to resolve specific markers of volatile organic compound oxidation, while offline analysis of markers focus on a small proportion of organic aerosol and lack the time resolution to carry out detailed statistical analysis required to study the dynamic changes in aerosol sources and chemistry. Here we use data collected as part of the joint UK–China Air Pollution and Human Health (APHH-Beijing) collaboration during a field campaign in urban Beijing in the summer of 2017 alongside laboratory measurements of secondary organic aerosol from oxidation of key aromatic precursors (1,3,5-trimethyl benzene, 1,2,4-trimethyl benzene, propyl benzene, isopropyl benzene and 1-methyl naphthalene) to study the anthropogenic and biogenic contributions to organic aerosol. For the first time in Beijing, this study applies positive matrix factorisation to online measurements of organic aerosol composition from a time-of-flight iodide chemical ionisation mass spectrometer fitted with a filter inlet for gases and aerosols (FIGAERO-ToF-I-CIMS). This approach identifies the real-time variations in sources and oxidation processes influencing aerosol composition at a near-molecular level. We identify eight factors with distinct temporal variability, highlighting episodic differences in OA composition attributed to regional influences and in situ formation. These have average carbon numbers ranging from C5–C9 and can be associated with oxidation of anthropogenic aromatic hydrocarbons alongside biogenic emissions of isoprene, α-pinene and sesquiterpenes.

Graphical abstract: Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2020
Accepted
23 Sep 2020
First published
21 Jan 2021
This article is Open Access
Creative Commons BY license

Faraday Discuss., 2021,226, 382-408

Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing

A. Mehra, M. Canagaratna, T. J. Bannan, S. D. Worrall, A. Bacak, M. Priestley, D. Liu, J. Zhao, W. Xu, Y. Sun, J. F. Hamilton, F. A. Squires, J. Lee, D. J. Bryant, J. R. Hopkins, A. Elzein, S. H. Budisulistiorini, X. Cheng, Q. Chen, Y. Wang, L. Wang, H. Stark, J. E. Krechmer, J. Brean, E. Slater, L. Whalley, D. Heard, B. Ouyang, W. J. F. Acton, C. N. Hewitt, X. Wang, P. Fu, J. Jayne, D. Worsnop, J. Allan, C. Percival and H. Coe, Faraday Discuss., 2021, 226, 382 DOI: 10.1039/D0FD00080A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements