Skip to main content
Log in

A Fluorescent Probe for the Fast Detection of Hypochlorite and its Applications in Water, Test Strip and Living Cells

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Hypochlorite (ClO) mediated by oxidative stress play an important role in the body's defense system due to their physiological and pathological significance. In this work, a new and simple probe was designed and synthesized to detect hypochlorite. This probe could rapidly respond to hypochlorite in a short time (20 s) in aqueous media, and showed excellent selectivity and sensitivity, and a wide pH range of 3 ̶ 12, as well as the low detection limit of 1.44 nM. In addition, it was successfully applied to the detection of ClO in water sample, test paper experiment, and cell imaging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available in the article and the supplementary materials.

References

  1. He X, Chen H, Xu C, Fan J, Xu W, Li Y, Deng H, Shen J (2020) Ratiometric and colorimetric fluorescent probe for hypochlorite monitor and application for bioimaging in living cells, bacteria and zebrafish. J Hazard Mater 388:122029. https://doi.org/10.1016/j.jhazmat.2020.122029

    Article  CAS  PubMed  Google Scholar 

  2. Xu L, Wu M, Zhao L, Han H, Zhang S, Ma P, Sun Y, Wang X, Song D (2020) A novel highly sensitive and near-infrared fluorescent probe for detecting hypochlorite and its application in actual water sample and bioimaging. Talanta 215:120892. https://doi.org/10.1016/j.talanta.2020.120892

    Article  CAS  PubMed  Google Scholar 

  3. Yuan Q, Zhao Z, Zhang Y, Su L, Miao J, Zhao B (2017) A lysosome-targeted ratiometric fluorescent probe for detection of hypochlorous acid in living cells. Sens Actuators B Chem 247:736–741. https://doi.org/10.1016/j.snb.2017.03.049

    Article  CAS  Google Scholar 

  4. Zhou Z, Li X, Tang Y, Zhang C, Fu H, Wu N, Ma L, Gao J, Wang Q (2018) Oxidative deoximation reaction induced recognition of hypochlorite based on a new fluorescent lanthanide-organic framework. Chem Eng J 351:364–370. https://doi.org/10.1016/j.cej.2018.06.123

    Article  CAS  Google Scholar 

  5. Lv J, Chen Y, Wang F, Wei T, Zhang Z, Qiang J, Chen X (2018) A mitochondria-targeted fluorescent probe based on fluorescein derivative for detection of hypochlorite in living cells. Dyes Pigm 148:353–358. https://doi.org/10.1016/j.dyepig.2017.09.037

    Article  CAS  Google Scholar 

  6. Li X, Gu J, Zhou Z, Liu W, Gao J, Wang Q (2020) Precise control for the aggregation and deaggregation with the aid of a tetraphenylethylene derivative: luminescence modulation and sensing performance. Dyes Pigm 172:107844. https://doi.org/10.1016/j.dyepig.2019.107844

    Article  CAS  Google Scholar 

  7. Zhu Y, Wang K, Wu X, Sun Y, Gong X, Cao D, Guan R, Liu Z (2020) A highly sensitive turn-on fluorescent probe for real-time detecting hypochlorite and its application in living cells. Talanta 209:120548. https://doi.org/10.1016/j.talanta.2019.120548

    Article  CAS  PubMed  Google Scholar 

  8. Fang Q, Tian H, Yang L, Chen S, Liu X, Song X (2018) A thiocoumarin-based fluorescent probe for detection of hypochlorite with high selectivity over other typical desulfurizing agents (Hg2+/Ag+). Sensor Actuat B Chem 260:146–155. https://doi.org/10.1016/j.snb.2017.12.142

    Article  CAS  Google Scholar 

  9. Zhang P, Wang H, Hong Y, Yu M, Zeng R, Long Y, Chen J (2018) Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens Bioelectron 99:318–324. https://doi.org/10.1016/j.bios.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Zhu B, Wu L, Zhang M, Wang Y, Liu C, Wang Z, Duan Q, Jia P (2018) A highly specific and ultrasensitive near-infrared fluorescent probe for imaging basal hypochlorite in the mitochondria of living cells. Biosens Bioelectron 107:218–223. https://doi.org/10.1016/j.bios.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  11. Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, Tang B (2016) Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem Commun 52:7288–7291. https://doi.org/10.1039/C6CC03415B

    Article  CAS  Google Scholar 

  12. Gu J, Li X, Zhou Z, Liao R, Gao J, Tang Y, Wang Q (2019) Synergistic regulation of effective detection for hypochlorite based on a dual-mode probe by employing aggregation induced emission (AIE) and intramolecular charge transfer (ICT) effects. Chem Eng J 368:157–164. https://doi.org/10.1016/j.cej.2019.02.175

    Article  CAS  Google Scholar 

  13. Zhao Y, Xue Y, Sun J, Xuan H, Xu Y, Cui Y, Dong J (2020) A new red fluorescent probe based on the rosamine-phenothiazine for highly selective and rapid detection of hypochlorite and its bioimaging in live cells. New J Chem 44:12674–12679. https://doi.org/10.1039/D0NJ02945A

    Article  Google Scholar 

  14. Wang L, Pan Q, Chen Y, Ou Y, Li H, Li B (2020) A dual-response ratiometric fluorescent probe for hypochlorite and hydrazine detection and its imaging in living cells. Spectrochim Acta A 241:118672. https://doi.org/10.1016/j.saa.2020.118672

    Article  CAS  Google Scholar 

  15. Hu Q, Qin C, Huang L, Wang H, Liu Q, Zeng L (2018) Selective visualization of hypochlorite and its fluctuation in cancer cells by a mitochondria-targeting ratiometric fluorescent probe. Dyes Pigm 149:53–260. https://doi.org/10.1016/j.dyepig.2017.10.002

    Article  CAS  Google Scholar 

  16. Xi L, Guo X, Wang C, Wu W, Huang M, Miao J, Zhao B (2018) A near-infrared ratiometric fluorescent probe for rapid and selective detection of hypochlorous acid in aqueous solution and living cells. Sensor Actuat B Chem 255:666–671. https://doi.org/10.1016/j.snb.2017.08.073

    Article  CAS  Google Scholar 

  17. Wu L, Wu I, DuFort C, Carlson M, Wu X, Chen L, Kuo C, Qin Y, Yu J, Hingorani S, Chiu D (2017) Photostable ratiometric pdot probe for in vitro and in vivo imaging of hypochlorous acid. J Am Chem Soc 139:6911–6918. https://doi.org/10.1021/jacs.7b01545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Ma L, Tang C, Pan S, Shi D, Wang S, Li M, Guo Y (2018) A highly sensitive and rapidly responding fluorescent probe based on a rhodol fluorophore for imaging endogenous hypochlorite in living mice. J Mater Chem B 6:725–731. https://doi.org/10.1039/C7TB02862H

    Article  CAS  PubMed  Google Scholar 

  19. Yap Y, Whiteman M, Cheung N (2007) Chlorinative stress: an under appreciated mediator of neurodegeneration? Cell Signal 19:219–218. https://doi.org/10.1016/j.cellsig.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  20. Al-Mallah Z, Amin AS (2018) Utility of solid phase extraction for colorimetric determination of lead in waters, vegetables, biological and soil samples. J Ind Eng Chem 67:461–468. https://doi.org/10.1016/j.jiec.2018.07.020

    Article  CAS  Google Scholar 

  21. Wang Z, Zhang Y, Song J, Yang Y, Xu X, Li M, Xu H, Wang S (2019) A novel isolongifolanone based fluorescent probe with super selectivity and sensitivity for hypochlorite and its application in bio-imaging. Anal Chim Acta 1051:169–178. https://doi.org/10.1016/j.aca.2018.11.028

    Article  CAS  PubMed  Google Scholar 

  22. Yang H, Dang Z, Zhang Y, Wei T, Yao H, Zhu W, Fan Y, Jiang X, Lin Q (2019) Novel cyanide supramolecular fluorescent chemosensor constructed from a quinoline hydrazone functionalized-pillar[5] arene. Spectrochim Acta A 220:117136. https://doi.org/10.1016/j.saa.2019.117136

    Article  CAS  Google Scholar 

  23. Lin Q, Gong G, Fan Y, Chen Y, Wang J, Guan X, Liu J, Zhang Y, Yao H, Wei T (2019) Anion induced supramolecular polymerization: a novel approach for the ultrasensitive detection and separation of F. Chem Commun 55:3247–3250. https://doi.org/10.1039/C8CC09876J

    Article  CAS  Google Scholar 

  24. Kim A, Kang HJ, Jang, Jung H (2018) Fluorescent detection of Zn(II) and In(III) and colorimetric detection of Cu(II) and Co(II) by a versatile chemosensor. J Ind Eng Chem 65:290–299. https://doi.org/10.1016/j.jiec.2018.04.040

    Article  CAS  Google Scholar 

  25. Liu J, Fan Y, Zhang Q, Yao H, Zhang Y, Wei T, Lin Q (2019) Super metal hydrogels constructed from a simple tripodal gelator and rare earth metal ions and its application in highly selective and ultrasensitive detection of histidine. Soft Matter 15:999–1004. https://doi.org/10.1039/C8SM02319K

    Article  CAS  PubMed  Google Scholar 

  26. So H, Lee H, Lee G, Kim M, Lim M, Kim K, Kim C (2020) A thiourea- based fluorescent chemosensor for bioimaging hypochlorite. J Ind Eng Chem 89:89436–89441. https://doi.org/10.1016/j.jiec.2020.06.016

    Article  CAS  Google Scholar 

  27. Ding H, Pu Y, Ye D, Dong Z, Man Y, Lv C, An Y (2020) The design and synthesis of two imidazole fluorescent probes for the special recognition of HClO/NaHSO3 and their applications. Anal Methods 12:2476–2483. https://doi.org/10.1039/D0AY00334D

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Ma Y, Wang Z, Zhang X, Chen X, Hou S, Wang H (2019) A novel colorimetric and far-red emission ratiometric fluorescent probe for the highly selective and ultrafast detection of hypochlorite in water and its application in bioimaging. Analyst 145:939–945. https://doi.org/10.1039/C9AN02034A

    Article  Google Scholar 

  29. Yang Y, Qiu F, Wang Y, Feng Y, Song X, Tang X, Zhang G, Liu W (2018) A sensitive and selective off-on fluorescent probe for HClO in 100% aqueous solution and its applications in bioimaging. Sensor Actuat B Chem 260:832–840. https://doi.org/10.1016/j.snb.2017.12.204

    Article  CAS  Google Scholar 

  30. Pan Y, huang J, Han Y (2017) A new ESIPT-based fluorescent probe for highly selective and sensitive detection of HClO in aqueous solution. Tetrahedron Lett 58(13):1301–1304. https://doi.org/10.1016/j.tetlet.2017.02.043

    Article  CAS  Google Scholar 

  31. Sun X, Yan F, Jiang Y, Zhang H, Sun Z, Wang R, Cui Y (2020) Designing enhanced and ratiometric probes for detecting OCl based on substituents influencing the fluorescence of HBT and their application in strips and bioimaging. Analyst 145:5933–5939. https://doi.org/10.1039/D0AN00885K

    Article  CAS  PubMed  Google Scholar 

  32. Zhong X, Yang Q, Chen Y, Jiang Y, Dai Z (2020) Aggregation-induced fluorescence probe for hypochlorite imaging in mitochondria of living cells and zebrafish. J Mater Chem B 8:7375–7381. https://doi.org/10.1039/D0TB01496F

    Article  CAS  PubMed  Google Scholar 

  33. Yan L, Hu C, Li J (2018) A fluorescence turn-on probe for rapid monitoring of hypochlorite based on coumarin Schiff base. Anal Bioanal Chem 410:7457–7464. https://doi.org/10.1007/s00216-018-1352-8

    Article  CAS  PubMed  Google Scholar 

  34. Huang Y, Zhang Y, Huo F, Chao J, Yin C (2019) A near-infrared ratiometric fluorescent probe with large stokes based on isophorone for rapid detection of ClO- and its bioimaging in cell and mice. Sensor Actuat B Chem 287:453–458. https://doi.org/10.1016/j.snb.2019.02.075

    Article  CAS  Google Scholar 

  35. Shi L, Yu H, Zeng X, Yang S, Gong S, Xiang H, Zhang K, Shao G (2020) A novel ratiometric fluorescent probe based on thienocoumarin and its application for the selective detection of hypochlorite in real water samples and in vivo. New J Chem 44:6232–6237. https://doi.org/10.1039/D0NJ00318B

    Article  CAS  Google Scholar 

  36. Zang S, Kong X, Cui J, Su S, Shu W, Jing J, Zhang X (2020) Revealing the redox status in endoplasmic reticulum by a selenium fluorescence probe. J Mater Chem B 8:660–2665. https://doi.org/10.1039/C9TB02919B

    Article  Google Scholar 

  37. Li H, Miao Y, Liu Z, Wu X, Piao C, Zhou X (2020) A mitochondria-targeted fluorescent probe for fast detecting hypochlorite in living cells. Dyes Pigm 176:108192. https://doi.org/10.1016/j.dyepig.2020.108192

    Article  CAS  Google Scholar 

  38. Zhu Y, Ma Y, Liu Y, Liu Z, Ma S, Xing M, Cao D, Lin W (2021) Fluorescence response of a fluorescein derivative for hypochlorite ion and its application for biological imaging in wounded zebrafish and living mice. Sensor Actuat B Chem 327:128848. https://doi.org/10.1016/j.snb.2020.128848

    Article  CAS  Google Scholar 

  39. Chen H, He X, Yu Y, Qian Y, Shen J, Zhao S (2020) Execution of aggregation-induced emission as nano-sensors for hypochlorite detection and application for bioimaging in living cells and zebrafish. Talanta 214:120842. https://doi.org/10.1016/j.talanta.2020.120842

    Article  CAS  PubMed  Google Scholar 

  40. Ma Z, Sun W, Chen L, Li J, Liu Z, Bai H, Zhu M, Du L, Shi X, Li M (2013) A novel hydrazino-substituted naphthalimide-based fluorogenic probe for tert-butoxy radicals. Chem Commun 49:6295–6297. https://doi.org/10.1039/C3CC42052C

    Article  CAS  Google Scholar 

  41. Yan L, Zhang S, Xie Y, Lei C (2020) A fluorescent probe for Gallium (III) ions based on 2-hydroxy-1-naphthaldehyde and L-serine. Dyes Pigm 175:108190. https://doi.org/10.1016/j.dyepig.2020.108190

    Article  CAS  Google Scholar 

  42. Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T (2011) Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J Am Chem Soc 133:5680–5682. https://doi.org/10.1021/ja111470n

    Article  CAS  PubMed  Google Scholar 

  43. Yu D, Huang F, Ding S, Feng G (2014) Near-infrared fluorescent probe for detection of thiophenols in water samples and living cells. Anal Chem 86:8835–8841. https://doi.org/10.1021/ac502227p

    Article  CAS  PubMed  Google Scholar 

  44. Huang Y, Zhang Y, Huo F, Liu Y, Yin C (2020) Mitochondrial-targeted near-infrared “dual mode” fluorescent dyes with large Stokes shift for detection of hypochlorous acid and its bioimaging in cell and mice. Dyes Pigments 179:108387. https://doi.org/10.1016/j.dyepig.2020.108387

    Article  CAS  Google Scholar 

  45. Gong Y, Guo X, Teng B, Zhang Q, Zhang P, Ding C (2021) Ratiometric fluorescent strategy for malononitrile determination in organic and aqueous medium and biological imaging. Dyes Pigments 184:108859. https://doi.org/10.1016/j.dyepig.2020.108859

    Article  CAS  Google Scholar 

  46. Zhang P, Fu C, Xiao Y, Zhang Q, Ding C (2020) Copper(II) complex as a turn on fluorescent sensing platform for acetylcholinesterase activity with high sensitivity. Talanta 208:120406. https://doi.org/10.1016/j.talanta.2019.120406

    Article  CAS  PubMed  Google Scholar 

  47. Zhang P, Fu C, Zhang Q, Li S, Ding C (2019) Ratiometric fluorescent strategy for localizing alkaline phosphatase activity in mitochondria based on ESIPT process. Anal Chem 91:12377–12383. https://doi.org/10.1021/acs.analchem.9b02917

    Article  CAS  PubMed  Google Scholar 

  48. Joel K (1983) Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots. J Am Chem Soc 105:1494–1498. https://doi.org/10.1021/ja00344a013

    Article  Google Scholar 

  49. Meng Q, Zhang R, Jia H, Gao X, Wang C, Shi Y, Arun V, Everest-Dass, Zhang Z (2015) A reversible fluorescence chemosensor for sequentially quantitative monitoring copper and sulfide in living cells. Talanta 143:294–301. https://doi.org/10.1016/j.talanta.2015.04.072

    Article  CAS  PubMed  Google Scholar 

  50. Jung H, Kwon P, Lee J, Kim J, Hong C, Kim J, Yan S, Lee J, Lee J, Joo T, Kim J (2009) Coumarin-derived Cu(2+)-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012. https://doi.org/10.1021/ja808611d

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Guangxi Province (2018GXNSFBA281070).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Shiqing Zhang, Xinyue Mu and Liqiang Yan. The first draft of the manuscript was written by Liqiang Yan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liqiang Yan.

Ethics declarations

Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Mu, X. & Yan, L. A Fluorescent Probe for the Fast Detection of Hypochlorite and its Applications in Water, Test Strip and Living Cells. J Fluoresc 31, 569–576 (2021). https://doi.org/10.1007/s10895-020-02675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02675-z

Keywords:

Navigation