Skip to main content
Log in

Joining of copper nanowires by electrodepositing silver layer for high-performance transparent electrode

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Copper nanowire (CuNW) has been considered as one of the most promising materials to replace ITO for transparent electrode (TE). However, the loose connections and oxidation problem limited its practical usage. Herein, we introduced a facile and simple electrodeposition method to solve these problems, which can effectively join the stacked NWs together and improve the oxidation resistance. After electrodeposition of Ag layer, the sheet resistance decreased to 13.8 Ohm/sq. at a transmittance of 90.5%. Thanks to the forming of firm joints, the relative resistance kept stable after 1000 times cyclic bending. Compared with pristine TE that the electrical conductivity increased 10 times under the atmosphere ambient, the electrical conductivity nearly unchanged after electrodepositing Ag layer under the same condition. The peaks of copper oxides are not observed in the XPS spectrum, proving the Ag layer prevents the contact between CuNWs and oxygen element. At last, a flexible and transparent heater was fabricated based on these advantages, which can produce uniform heating under a low input voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH (2012) Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4(20):6408–6414. https://doi.org/10.1039/c2nr31254a

    Google Scholar 

  2. Tian Y, Zhang H, Hang C, Wang S, Feng J, Ding S, Huang Y (2020) Recent advancesin metal nanowire-based transparent conductive films: fabrication and applications. Sci Found China 28(2). https://doi.org/10.16262/j.cnki.1005-0841.2020.02.003

  3. Ye S, Rathmell AR, Chen Z, Stewart IE, Wiley BJ (2014) Metal nanowire networks: the next generation of transparent conductors. Adv Mater 26(39):6670–6687. https://doi.org/10.1002/adma.201402710

    Google Scholar 

  4. Lee J, Lee P, Lee HB, Hong S, Lee I, Yeo J, Lee SS, Kim T-S, Lee D, Ko SH (2013) Room-temperature Nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv Funct Mater 23(34):4171–4176. https://doi.org/10.1002/adfm.201203802

    Google Scholar 

  5. Huang Y, Liu Y, Youssef K, Tong K, Tian Y, Pei Q (2018) A solution processed flexible Nanocomposite substrate with efficient light extraction via periodic wrinkles for white organic light-emitting diodes. Adv Opt Mater 6(23). https://doi.org/10.1002/adom.201801015

  6. Lee H, Lee D, Ahn Y, Lee E-W, Park LS, Lee Y (2014) Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer. Nanoscale 6(15):8565–8570. https://doi.org/10.1039/C4NR01768D

    Google Scholar 

  7. Li W, Yarali E, Bakytbekov A, Anthopoulos TD, Shamim A (2020) Highly transparent and conductive electrodes enabled by scalable printing-and-sintering of silver nanowires. Nanotechnology 31(39):395201. https://doi.org/10.1088/1361-6528/ab9c53

    Google Scholar 

  8. Wang S, Tian Y, Wang C, Hang C, Huang Y, Liao C (2019) Chemical and thermal robust tri-layer rGO/Ag NWs/GO composite film for wearable heaters. Compos Sci Technol 174:76–83. https://doi.org/10.1016/j.compscitech.2019.02.022

    Google Scholar 

  9. Wu X, Zhou Z, Wang Y, Li J (2020) Syntheses of silver nanowires ink and printable flexible transparent conductive film: a review. Coatings 10(9). https://doi.org/10.3390/coatings10090865

  10. Byun E, Seo J, Kim D, Kim J (2018) Bifacial CdS/CdTe thin-film solar cells with copper nanowires as a transparent back contact. Opt Express 26(18):23594–23601. https://doi.org/10.1364/OE.26.023594

    Google Scholar 

  11. Zhai H, Li Y, Chen L, Wang X, Shi L, Wang R, Sun J (2018) Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Res 11(4):1956–1966. https://doi.org/10.1007/s12274-017-1812-z

    Google Scholar 

  12. Du H, Pan Y, Zhang X, Cao F, Wan T, Du H, Joshi R, Chu D (2019) Silver nanowire/nickel hydroxide nanosheet composite for a transparent electrode and all-solid-state supercapacitor. Nanoscale Adv 1(1):140–146. https://doi.org/10.1039/C8NA00110C

    Google Scholar 

  13. Lu Z, Yao C, Xie F, Si L, Jia F, Huang J, Wang Y, Ma Q (2020) Highly flexible and conductive sodium carboxymethyl cellulose/silver nanowires composite films. J Mater Sci Mater Electron 31(3):2353–2359. https://doi.org/10.1007/s10854-019-02768-x

    Google Scholar 

  14. Xu X, Liu Z, He P, Yang J (2019) Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. J Phys D Appl Phys 52(45):455401. https://doi.org/10.1088/1361-6463/ab3869

    Google Scholar 

  15. Nguyen VH, Resende J, Papanastasiou DT, Fontanals N, Jiménez C, Muñoz-Rojas D, Bellet D (2019) Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: impact of the network density. Nanoscale 11(25):12097–12107. https://doi.org/10.1039/C9NR02664A

    Google Scholar 

  16. Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5):2955–2963. https://doi.org/10.1021/nn1005232

    Google Scholar 

  17. Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2010) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1):43–48. https://doi.org/10.1021/nn900728d

    Google Scholar 

  18. Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513. https://doi.org/10.1002/adma.201003188

    Google Scholar 

  19. Hecht DS, Heintz AM, Lee R, Hu L, Moore B, Cucksey C, Risser S (2011) High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 22(7):075201. https://doi.org/10.1088/0957-4484/22/7/075201

    Google Scholar 

  20. Beibei Z, Zakya HK, Filbert JB (2014) Transparent electrodes based on two-dimensional Ag nanogrids and double one-dimensional Ag nanogratings for organic photovoltaics. J Photonics Energy 5(1):1–13. https://doi.org/10.1117/1.JPE.5.057005

    Google Scholar 

  21. Wang J, Fei F, Luo Q, Nie S, Wu N, Chen X, Su W, Li Y, Ma C-Q (2017) Modification of the highly conductive PEDOT:PSS layer for use in silver nanogrid electrodes for flexible inverted polymer solar cells. ACS Appl Mater Interfaces 9(8):7834–7842. https://doi.org/10.1021/acsami.6b16341

    Google Scholar 

  22. Zhang H, Tian Y, Wang S, Huang Y, Wen J, Hang C, Zheng Z, Wang C (2020) Highly stable flexible transparent electrode via rapid electrodeposition coating of Ag-au alloy on copper nanowires for bifunctional electrochromic and supercapacitor device. Chem Eng J 399:125075. https://doi.org/10.1016/j.cej.2020.125075

    Google Scholar 

  23. Yang Y, Chen S, Li W, Li P, Ma J, Li B, Zhao X, Ju Z, Chang H, Xiao L, Xu H, Liu Y (2020) Reduced graphene oxide gonformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14(7):8754–8765. https://doi.org/10.1021/acsnano.0c03337

    Google Scholar 

  24. Ding S, Tian Y, Jiu J, Suganuma K (2018) Highly conductive and transparent copper nanowire electrodes on surface coated flexible and heat-sensitive substrates. RSC Adv 8(4):2109–2115. https://doi.org/10.1039/C7RA12738C

    Google Scholar 

  25. Duong T-H, Tran N-H, Kim H-C (2017) Low cost fabrication of flexible transparent electrodes using copper nanowires. Thin Solid Films 622:17–22. https://doi.org/10.1016/j.tsf.2016.12.015

    Google Scholar 

  26. Zhang H, Wang S, Tian Y, Liu Y, Wen J, Huang Y, Hang C, Zheng Z, Wang C (2020) Electrodeposition fabrication of cu@Ni core shell nanowire network for highly stable transparent conductive films. Chem Eng J 390:124495. https://doi.org/10.1016/j.cej.2020.124495

    Google Scholar 

  27. Tomotoshi D, Kawasaki H (2020) Surface and Interface designs in copper-based conductive inks for printed/flexible electronics. Nanomaterials 10(9). https://doi.org/10.3390/nano10091689

  28. Wang Y, Liu P, Wang H, Zeng B, Wang J, Chi F (2019) Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode. J Mater Sci 54(3):2343–2350. https://doi.org/10.1007/s10853-018-2986-9

    Google Scholar 

  29. Wang R, Ruan H (2016) Synthesis of copper nanowires and its application to flexible transparent electrode. J Alloys Compd 656:936–943. https://doi.org/10.1016/j.jallcom.2015.09.279

    Google Scholar 

  30. Mallikarjuna K, Hwang H-J, Chung W-H, Kim H-S (2016) Photonic welding of ultra-long copper nanowire network for flexible transparent electrodes using white flash light sintering. RSC Adv 6(6):4770–4779. https://doi.org/10.1039/C5RA25548A

    Google Scholar 

  31. Wang J, Chen H, Zhao Y, Zhong Z, Tang Y, Liu G, Feng X, Xu F, Chen X, Cai D, Kang J (2020) Programmed ultrafast scan welding of cu nanowire networks with a pulsed ultraviolet laser beam for transparent conductive electrodes and flexible circuits. ACS Appl Mater Interfaces 12(31):35211–35221. https://doi.org/10.1021/acsami.0c07962

    Google Scholar 

  32. Ding S, Jiu J, Tian Y, Sugahara T, Nagao S, Suganuma K (2015) Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air. Phys Chem Chem Phys 17(46):31110–31116. https://doi.org/10.1039/c5cp04582g

    Google Scholar 

  33. Bobinger M, Mock J, La Torraca P, Becherer M, Lugli P, Larcher L (2017) Tailoring the aqueous synthesis and deposition of copper nanowires for transparent electrodes and heaters. Adv Mater Interfaces 4(20):1700568. https://doi.org/10.1002/admi.201700568

    Google Scholar 

  34. Tokuno T, Nogi M, Karakawa M, Jiu J, Nge TT, Aso Y, Suganuma K (2011) Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res 4(12):1215–1222. https://doi.org/10.1007/s12274-011-0172-3

    Google Scholar 

  35. Park JH, Jeong S, Lee EJ, Lee SS, Seok JY, Yang M, Choi Y, Kang B (2016) Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics. Chem Mater 28(12):4151–4159. https://doi.org/10.1021/acs.chemmater.6b00013

    Google Scholar 

  36. Ding S, Jiu J, Gao Y, Tian Y, Araki T, Sugahara T, Nagao S, Nogi M, Koga H, Suganuma K, Uchida H (2016) One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Appl Mater Interfaces 8(9):6190–6199. https://doi.org/10.1021/acsami.5b10802

    Google Scholar 

  37. Peng P, Li L, He P, Zhu Y, Fu J, Huang Y, Guo W (2019) One-step selective laser patterning of copper/graphene flexible electrodes. Nanotechnology 30(18):185301. https://doi.org/10.1088/1361-6528/aafe4c

    Google Scholar 

  38. Kholmanov IN, Domingues SH, Chou H, Wang X, Tan C, Kim J-Y, Li H, Piner R, Zarbin AJG, Ruoff RS (2013) Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano 7(2):1811–1816. https://doi.org/10.1021/nn3060175

    Google Scholar 

  39. Mayousse C, Celle C, Carella A, Simonato J-P (2014) Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS. Nano Res 7(3):315–324. https://doi.org/10.1007/s12274-013-0397-4

    Google Scholar 

  40. Zhai H, Li Y, Chen L, Wang X, Shi L, Wang R, Sun J (2018) Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. Nano Res 11(4):1895–1904. https://doi.org/10.1007/s12274-017-1807-9

    Google Scholar 

  41. Zhang H, Wang S, Tian Y, Wen J, Hang C, Zheng Z, Huang Y, Ding S, Wang C (2020) High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes. Nano Mater Sci 2(2):164–171. https://doi.org/10.1016/j.nanoms.2019.09.007

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial supports from the NSAF (Grant No. U1730107) and China Postdoctoral Science Foundation (Grant No. 2019 M660073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Tian.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission VII - Microjoining and Nanojoining

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, S., Hang, C. et al. Joining of copper nanowires by electrodepositing silver layer for high-performance transparent electrode. Weld World 65, 1021–1030 (2021). https://doi.org/10.1007/s40194-021-01066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01066-7

Keywords

Navigation