Skip to main content
Log in

Symmetrical localized states in three-layered structure consisting of linear layer between defocusing media separated by interfaces with nonlinear response

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The three-layered symmetric structure consisting of a linear layer sandwiched between defocusing nonlinear media was considered. The layers are separated by interfaces with nonlinear properties. The nonlinear symmetrical localized states arising in such a structure were described theoretically. The proposed model is based on the nonlinear Schrödinger equation with negative Kerr-type nonlinear term and nonlinear self-consistent potential describing the interaction of the waves and interfaces. Even and odd solutions of nonlinear Schrödinger equation correspond to the localized states of two types existing in different energy ranges. The stationary state energies as the system parameter functions are calculated in explicit form. The conditions of their existence were analyze depending on the combination of signs of nonlinear interface parameters. The localized states of the special kinds existing only for the case of interfaces, which are characterized by a strong nonlinear response, were found. The dependencies of localization energies on the amplitude of the interface oscillations were studied analytically.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. Z.N. Danoyan, G.T. Piliposian, Surface electro-elastic shear horizontal waves in a layered structure with a piezoelectric substrate and a hard dielectric layer. Int. J. Solids Struct. 45, 431–441 (2008). https://doi.org/10.1016/j.ijsolstr.2007.08.036

    Article  MATH  Google Scholar 

  2. Z. Qian, F. Jin, T. Lu, K. Kishimoto, Transverse surface waves in an FGM layered structure. Acta Mech. 207, 183–193 (2009). https://doi.org/10.1007/s00707-008-0123-6

    Article  MATH  Google Scholar 

  3. G. Valerio, D.R. Jackson, A. Galli, Formulas for the number of surface waves on layered structures. IEEE Trans. Microw. Theory Tech. 58, 1786–1795 (2010). https://doi.org/10.1109/TMTT.2010.2050028

    Article  ADS  Google Scholar 

  4. N.N. Akhmediev, Novel class of nonlinear surface waves: asymmetric modes in a symmetric layered structure. J. Exp. Theor. Phys. 56, 299–303 (1982)

    Google Scholar 

  5. D. Mikhalake, V.K. Fedyanin, P-polarized nonlinear surface and coupled waves in layered structures. Theor. Math. Phys. 54, 443–455 (1983)

    Article  Google Scholar 

  6. D. Mihalache, R.G. Nazmitdinov, V.K. Fedyanin, Nonlinear optical waves in layered structures. Phys. Elem. Part. At. Nucl. 20, 198–253 (1989)

    Google Scholar 

  7. A.D. Boardman, M.M. Shabat, R.F. Wallis, TE waves at an interface between linear gyromagnetic and nonlinear dielectric media. J. Phys. D Appl. Phys. 24, 1702–1707 (1991). https://doi.org/10.1088/0022-3727/24/10/002

    Article  ADS  Google Scholar 

  8. O.V. Korovai, P.I. Khadzhi, Nonlinear surface waves in a symmetrical three-layer structure caused by the generation of excitons and biexcitons in semiconductors. Phys. Solid State 45, 386–390 (2003). https://doi.org/10.1134/1.1553548

    Article  ADS  Google Scholar 

  9. O.V. Korovai, P.I. Khadzhi, Nonlinear asymmetric waves induced in a symmetrical three-layer structure by the generation of excitons and biexcitons in semiconductors. Phys. Solid State 50, 1116–1120 (2008). https://doi.org/10.1134/S1063783408060279

    Article  Google Scholar 

  10. O.V. Korovai, P.I. Khadzhi, Nonlinear TE-polarized quasi-surface waves in a symmetric optical waveguide with a nonlinear core. Phys. Solid State 52, 2434–2439 (2010). https://doi.org/10.1134/S106378341

    Article  ADS  Google Scholar 

  11. O.V. Korovai, Nonlinear s-polarized quasi-surface waves in the symmetric structure with a metamaterial core. Phys. Solid State 57, 1456–1462 (2015). https://doi.org/10.1134/S1063783415070197

    Article  ADS  Google Scholar 

  12. M.S. Hamada, A.I. Assa’d, H.S. Ashour, M.M. Shabat, Nonlinear magnetostatic surface waves in a ferrite-left-handed waveguide structure. J. Microw. Optoelectr. 5, 45–54 (2006)

    Google Scholar 

  13. A.I. Assa’d, H.S. Ashour, S-polarized surface waves in ferrite bounded by nonlinear nonmagnetic negative permittivity metamaterial. J. Al Azhar Univ. Gaza (Nat. Sci.) 13, 93–108 (2011)

    Google Scholar 

  14. A.I. Assa’d, H.S. Ashour, TE surface waves in dielectric slab sandwiched between LHM slabs. Turk. J. Phys. 36, 207–213 (2012). https://doi.org/10.3906/fiz-1106-8

    Article  Google Scholar 

  15. V.A. Trofimov, I.G. Zakharova, P.Y. Shestakov, Nonlinear localization of chirped femtosecond pulse in layered photonic structure, in 2017 Progress In Electromagnetics Research Symposium—Spring (PIERS) (t. Petersburg, 2017), p. 3382. https://doi.org/10.1109/PIERS.2017.8262342

  16. N. Zhong, Z. Wang, M. Chen, X. Xin, R. Wu, Y. Cen, Y. Li, Three-layer-structure polymer optical fiber with a rough inter-layer surface as a highly sensitive evanescent wave sensor. Sens. Actuators B Chem. 254, 133–142 (2018). https://doi.org/10.1016/j.snb.2017.07.032

    Article  Google Scholar 

  17. H. Sakaguchi, B.A. Malomed, Matter-wave soliton interferometer based on a nonlinear splitter. New J. Phys. 18, 025020–025033 (2016). https://doi.org/10.1088/1367-2630/18/2/025020

    Article  ADS  Google Scholar 

  18. D. Zhang, Z. Li, W. Hu, B. Cheng, Broadband optical reflector—an application of light localization in one dimension. Appl. Phys. Lett. 67, 2431 (1995). https://doi.org/10.1063/1.114597

    Article  ADS  Google Scholar 

  19. N.B. Ali, Narrow stop band microwave filters by using hybrid generalized quasi-periodic photonic crystals. Chin. J. Phys. 55, 2384–2392 (2017). https://doi.org/10.1016/j.cjph.2017.10.008

    Article  MathSciNet  Google Scholar 

  20. I.S. Panyaev, N.N. Dadoenkova, Y.S. Dadoenkova, I.A. Rozhleys, M. Krawczyk, I.L. Lyubchanckii, D.G. Sannikov, Four-layer nanocomposite structure as an effective optical waveguide switcher for near-IR regime. J. Phys. D Appl. Phys. 49, 435103 (2016). https://doi.org/10.1088/0022-3727/49/43/435103

    Article  ADS  Google Scholar 

  21. Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003), p. 540

    Google Scholar 

  22. R. Carretero-González, J. Cuevas-Maraver, D. Frantzeskakis, N. Karachalios, P. Kevrekidis, F. Palmero-Acebedo, Localized Excitations in Nonlinear Complex Systems, vol. 432 (Springer, Berlin, 2013)

    MATH  Google Scholar 

  23. Y.V. Kartashov, B.A. Malomed, L. Torner, Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247 (2011). https://doi.org/10.1103/RevModPhys.83.247

    Article  ADS  Google Scholar 

  24. I.V. Gerasimchuk, A.S. Kovalev, Localization of nonlinear waves in layered media. Low Temp. Phys. 26, 586–566 (2000). https://doi.org/10.1063/1.1289129

    Article  ADS  Google Scholar 

  25. I.V. Gerasimchuk, A.S. Kovalev, Localization of nonlinear waves between interfaces. Phys. Solid State 45, 1141–1144 (2003). https://doi.org/10.1134/1.1583805

    Article  ADS  Google Scholar 

  26. I.V. Gerasimchuk, V.S. Gerasimchuk, Localization of nonlinear spin waves in magnetic multilayers. J. Appl. Phys. 124, 085301 (2018). https://doi.org/10.1063/1.5037211

    Article  ADS  Google Scholar 

  27. L.V. Fedorov, K.D. Ljahomskaja, Nonlinear surface waves with allowance for the saturation effect. Tech. Phys. Lett. 23, 915–916 (1997). https://doi.org/10.1134/1.1261931

    Article  ADS  Google Scholar 

  28. B.A. Usievich, D.K. Nurligareev, V.A. Sychugov, L.I. Ivleva, P.A. Lykov, N.V. Bogodaev, Nonlinear surface waves on the boundary of a photorefractive crystal. Quantum Electron. 40, 437440 (2010). https://doi.org/10.1070/QE2010v040n05ABEH014223

    Article  Google Scholar 

  29. L. Calaca, A.T. Avelar, D. Bazeia, W.B. Cardoso, Modulation of localized solutions for the Schrödinger equation with logarithm nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 19, 2928-1-5 (2014). https://doi.org/10.1016/j.cnsns.2014.02.002

    Article  ADS  MATH  Google Scholar 

  30. K. Zhan, H. Tian, X. Li, X. Xu, Z. Jiao, Y. Jia, Solitons in PT-symmetric periodic systems with the logarithmically saturable nonlinearity. Sci. Rep. 6, 32990 (2016). https://doi.org/10.1038/srep32990

    Article  ADS  Google Scholar 

  31. A.I. Buzdin, V.N. Men’shov, V.V. Tugushev, Localized states on defects in electronic transitions into a soliton-lattice state. J. Exp. Theor. Phys. 64, 1310–1318 (1986)

    Google Scholar 

  32. A.I. Buzdin, S.V. Polonskii, Nonuniform state in quasi-1 D superconductors. J. Exp. Theor. Phys. 66, 422–429 (1987)

    Google Scholar 

  33. V.N. Men’shov, V.V. Tugushev, Interface-induced states with an incommensurate spin-density wave in Fe/Cr-type multilayers. Phys. Solid State 44(9), 17271735 (2002). https://doi.org/10.1134/1.1507257

    Article  Google Scholar 

  34. N.V. Vysotina, N.N. Rosanov, A.N. Shatsev, Interactions of Bose–Einstein-condensate oscillons. Opt. Spectrosc. 124, 79–93 (2018). https://doi.org/10.1134/S0030400X18010228

    Article  ADS  Google Scholar 

  35. A.V. Chaplik, Quantum-mechanical generalization of the Thomas–Fermi model. J. Exp. Theor. Phys. Lett. 105, 601–605 (2017). https://doi.org/10.1134/S0021364017090089

    Article  Google Scholar 

  36. P. Medley, M.A. Minar, N.C. Cizek, D. Berryrieser, M.A. Kasevich, Evaporative production of bright atomic solitons. Phys. Rev. Lett. 112, 060401 (2014). https://doi.org/10.1103/PhysRevLett.112.060401

    Article  ADS  Google Scholar 

  37. A.L. Marchant, T.P. Billam, T.P. Wiles, M.M.H. Yu, S.A. Gardiner, S.L. Cornish, Controlled formation and reflection of a bright solitary matter-wave. Nat. Commun. 4, 1865 (2013). https://doi.org/10.1038/ncomms2893

    Article  ADS  Google Scholar 

  38. Y.S. Kivshar, A.M. Kosevich, O.A. Chubykalo, Resonant and non-resonant soliton scattering by impurities. Phys. Lett. A 125(1), 35–40 (1987). https://doi.org/10.1016/0375-9601(87)90514-7

    Article  ADS  Google Scholar 

  39. M.M. Bogdan, I.V. Gerasimchuk, A.S. Kovalev, Dynamics and stability of localized modes in nonlinear media with point defects. Low Temp. Phys. 23, 197–207 (1997). https://doi.org/10.1063/1.593346

    Article  Google Scholar 

  40. S.E. Savotchenko, Localization of waves near the interface between nonlinear media with spatial dispersion. Russ. Phys. J. 47, 556–562 (2004). https://doi.org/10.1023/B:RUPJ.0000046330.92744.73

    Article  MATH  Google Scholar 

  41. A.A. Sukhorukov, YuS Kivshar, Nonlinear localized waves in a periodic medium. Phys. Rev. Lett. 87(4), 083901 (2001). https://doi.org/10.1103/PhysRevLett.87.083901

    Article  ADS  Google Scholar 

  42. A.A. Sukhorukov, Y.S. Kivshar, Nonlinear guided waves and spatial solitons in a periodic layered medium. J. Opt. Soc. Am. B 19, 772–781 (2002). https://doi.org/10.1364/JOSAB.19.000772

    Article  ADS  MathSciNet  Google Scholar 

  43. I.V. Gerasimchuk, P.K. Gorbach, P.P. Dovhopolyi, Localized states in a nonlinear medium containing a plane defect layer with nonlinear properties. Ukr. J. Phys. 57, 678–683 (2012)

    Google Scholar 

  44. I.V. Gerasimchuk, Localized states and their stability in an anharmonic medium with a nonlinear defect. JETP 121, 596–605 (2015). https://doi.org/10.1134/S1063776115100076

    Article  ADS  Google Scholar 

  45. E. Lidorikis, K. Busch, L. Qiming, C.T. Chan, C.M. Soukoulis, Optical nonlinear response of a single nonlinear dielectric layer sandwiched between two linear dielectric structures. Phys. Rev. B 56, 15090–15099 (1997). https://doi.org/10.1103/PhysRevB.56.15090

    Article  ADS  Google Scholar 

  46. I.V. Gerasimchuk, Localized states near a nonlinear optical waveguide. J. Nano Electron. Phys. 4, 04024 (2012)

    Google Scholar 

  47. S.E. Savotchenko, Peculiarities of linear wave interaction with nonlinear media interface. Mod. Phys. Lett. B. 32, 1850371–13 (2018). https://doi.org/10.1142/S0217984918503712

    Article  ADS  MathSciNet  Google Scholar 

  48. S.E. Savotchenko, Localized states near the interface with anharmonic properties between nonlinear media with different characteristics. Mod. Phys. Lett. B 32, 1850120–12 (2018). https://doi.org/10.1142/S0217984918501208

    Article  ADS  MathSciNet  Google Scholar 

  49. S.E. Savotchenko, Inhomogeneous states in a nonlinear self-focusing medium generated by a nonlinear defect. JETP Lett. 107, 455–457 (2018). https://doi.org/10.7868/S0370274X18080027

    Article  ADS  Google Scholar 

  50. S.E. Savotchenko, Periodic states near a planar defect with a nonlinear response that separates the nonlinear self-focusing and linear crystals. Condens. Matter Interph. (In Russian: “Kondensirovannye sredy i mezhfaznye granicy”) 20, 255–262 (2018). https://doi.org/10.17308/kcmf.2018.20/517

  51. S.E. Savotchenko, Localization on the interface with nonlinear response between linear and nonlinear focusing media. Surf. Interfaces 13, 157–162 (2018). https://doi.org/10.1016/j.surfin.2018.09.008

    Article  Google Scholar 

  52. S.E. Savotchenko, Stationary states near the interface with anharmonic properties between linear and nonlinear defocusing media. Solid State Commun. 283, 1–8 (2018). https://doi.org/10.1016/j.ssc.2018.08.002

    Article  ADS  Google Scholar 

  53. S.E. Savotchenko, Field confinement energy at a nonlinear interface between nonlinear defocusing media. JETP Lett. 108, 175–179 (2018). https://doi.org/10.1134/S0021364018150110

    Article  ADS  Google Scholar 

  54. S.E. Savotchenko, Spatially periodic inhomogeneous states in a nonlinear crystal with a nonlinear defect. JETP 127, 434–447 (2018). https://doi.org/10.1134/S1063776118090108

    Article  ADS  Google Scholar 

  55. S.E. Savotchenko, The field blocking on the interface with nonlinear response between nonlinear focusing media. Turk. J. Phys. 42, 721–736 (2018). https://doi.org/10.3906/fiz-1807-41

    Article  Google Scholar 

  56. S.E. Savotchenko, Features of localization of excitations near a nonlinear layer between linear media separated by plane defects with nonlinear properties. Nonlinear World (In Russian: “Nelinejnyj mir”) 3, 25–32 (2018)

    Google Scholar 

  57. S.E. Savotchenko, Localized states on the boundary between linear and nonlinear media. Condens. Matter Interph. (In Russian: “Kondensirovannye sredy i mezhfaznye granicy”) 19, 567–572 (2018). https://doi.org/10.17308/kcmf.2017.19/238

    Article  Google Scholar 

  58. H.J. Lipkin, Quantum Mechanics. New Approaches To Selected Topics, vol. 480 (Hoth-Holland Publ. Co., Amsterdam, 1973)

    Google Scholar 

  59. P.-G. de Gennes, P.A. Pincuse, Superconductivity of Metals and Alloys, vol. 274 (W. A. Benjamin, New York, 1966)

    MATH  Google Scholar 

  60. T. Strudley, R. Bruck, B. Mills, O.L. Muskens, An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial. Light Sci. Appl. 3, e207 (2014). https://doi.org/10.1038/lsa.2014.88

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SES wrote this paper and contributed with analytical calculations supplemented by graph data.

Corresponding author

Correspondence to S. E. Savotchenko.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (use it only if required the heading change)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. Symmetrical localized states in three-layered structure consisting of linear layer between defocusing media separated by interfaces with nonlinear response. Eur. Phys. J. D 75, 18 (2021). https://doi.org/10.1140/epjd/s10053-020-00005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00005-3

Navigation