Skip to main content
Log in

Quantum correlation and entanglement in the Heisenberg model with biquadratic interaction on square lattice

  • Regular Article - Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the bipartite entanglement as well as the correlation content between two partitions of the quantum 2D Heisenberg model with biquadratic interactions, where the \(\theta \) parameter controls the ratio of the biquadratic and exchange couplings. We also investigate the pairwise entanglement between nearest-neighbor qubits. The calculations were performed for the model on square lattice, in the Néel phase and ferroquadrupolar phase using spin wave theory and Schwinger boson approaches. In the Néel phase that corresponds to range \(-\pi<\theta <0\), we use the Dyson–Maleev representation and SU(2) Schwinger boson representation to calculate the von Neumann entropy as function of the biquadratic coupling \(J_\mathrm{{bq}}\). In the ferroquadrupolar phase, we use the SU(3) Schwinger boson representation which is adequate to treat this phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: My data weren’t previously deposited in none platform. However, they can be deposited in the future.]

References

  1. R.A. Muniz, Y. Kato, C.D. Batista, Prog. Theor. Exp. Phys. 2014, 083101 (2014)

    Article  Google Scholar 

  2. S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, T. Qju, Y. Maeno, Science 309, 1697 (2005)

    Article  ADS  Google Scholar 

  3. A. Läuchli, F. Mila, K. Penc, Phys. Rev. Lett. 97, 229901 (2006)

    Article  ADS  Google Scholar 

  4. A. Läuchli, F. Mila, K. Penc, Phys. Rev. Lett. 105, 229901 (2010)

    Article  Google Scholar 

  5. A. Joshi, M. Ma, F. Mila, D.N. Shi, F.C. Zhang, Phys. Rev. B 60, 6584 (1999)

    Article  ADS  Google Scholar 

  6. L.S. Lima, J. Magn. Magn. Mater. 428, 448 (2017)

    Article  ADS  Google Scholar 

  7. A. Smerald, N. Shannon, Phys. Rev. B 88, 184430 (2013)

    Article  ADS  Google Scholar 

  8. H.H. Zhao, C. Xu, Q.N. Chen, Z.C. Wei, M.P. Qin, G.M. Zhang, T. Xiang, Phys. Rev. B 85, 134416 (2012)

    Article  ADS  Google Scholar 

  9. A.S.T. Pires, Solid State Commun. 2017, 61 (2015)

    Article  ADS  Google Scholar 

  10. D. Stanek, O.P. Sushkov, G.S. Uhrig, Phys. Rev. B 84, 064505 (2011)

    Article  ADS  Google Scholar 

  11. T.J. Dyson, Phys. Rev. 102, 1217 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  12. T.J. Dyson, Phys. Rev. 102, 1230 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  13. S.V. Maleev, Sov. Phys. JETP 6, 776 (1958)

    ADS  Google Scholar 

  14. A. Altland, B. Simons, Condensed Matter Field Theory, 2nd edn. (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  15. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems, International Series in Pure and Applied Physics (McGraw-Hill, New York, 1971)

    Google Scholar 

  16. A. Auerbach, D.P. Arovas, Schwinger bosons approaches to quantum antiferromagnetism, in Introduction to Frustrated Magnetism, vol. 164, Springer Series in Solid-State Sciences, ed. by C. Lacroix, P. Mendels, F. Mila (Springer, Berlin, 2011), p. 365

    Chapter  Google Scholar 

  17. A. Auerbach, D.P. Arovas, Phys. Rev. Lett. 61, 617 (1988)

    Article  ADS  Google Scholar 

  18. D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)

    Article  ADS  Google Scholar 

  19. A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, New York, 1994)

    Book  Google Scholar 

  20. N. Papanicolaou, Nuclear Phys. B 305, 367 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. H.-T. Wang, Y. Wang, Phys. Rev. B 71, 104429 (2005)

    Article  ADS  Google Scholar 

  22. D. Bruss, G. Leuchs, Lectures on Quantum Information (WILEY-VCH Verlag, Weinheim, 2007)

    MATH  Google Scholar 

  23. A.R. Its, B.-Q. Jin, V.E. Korepin, J. Phys. A Math. Gen. 38, 2975 (2005)

    Article  ADS  Google Scholar 

  24. J.I. Latorre, E. Rico, G. Vidal, Quantum Inf. Comput. 4, 48 (2004)

    MathSciNet  Google Scholar 

  25. E. Fradkin, Field Theories of Condensed Matter Physics, 2nd edn. (Cambridge University Press, Cambridge, 2013)

    Book  MATH  Google Scholar 

  26. P. Calabrense, J. Cardy, J. Stat. Mech. Theor. Exp. 2004, P06002 (2004)

    Google Scholar 

  27. P. Calabrense, J. Cardy, Physica A 504, 31 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. D. Bianchini, O.A. Castro-Alvaredo, B. Doyon, E. Levi, F. Ravanini, J. Phys. A Math. Theor. 48, 04FT01 (2015)

    Article  Google Scholar 

  29. G. Vidal, J.L. Latorre, E.I. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  30. S.A. Owerre, J. Phys. Condens. Matter 29, 385801 (2017)

    Article  Google Scholar 

  31. S. Hill, W.K. Wooters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  32. W.K. Wooters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  33. X. Wang, P. Zanardi, Phys. Lett. A 301, 1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. L. Gálisová, J. Phys. Condens. Matter 31, 465801 (2019)

    Article  ADS  Google Scholar 

  35. N. Laflorencie, Phys. Rep. 646, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. A.L. Malvezzi, G. Karpat, B. Cakmak, F.F. Fanchini, T. Debarba, R.O. Vianna, Phys. Rev. B 93, 184428 (2016)

    Article  ADS  Google Scholar 

  37. K.H. Norwich, Physica A 462, 141 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. L.S. Lima, J. Mod. Phys. 06, 2231 (2015)

    Article  Google Scholar 

  39. L.S. Lima, Physica A 483, 239 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. L.S. Lima, Physica A 492, 1853 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  41. L.S. Lima, Eur. Phys. J. D 73, 6 (2019)

    Article  ADS  Google Scholar 

  42. L.S. Lima, J. Low Temp. Phys. 198, 241 (2020)

    Article  ADS  Google Scholar 

  43. L.S. Lima, J. Low Temp. Phys. 201, 515 (2020)

    Article  ADS  Google Scholar 

  44. L.S. Lima, Eur. Phys. J. D 73, 242 (2019)

    Article  ADS  Google Scholar 

  45. L.S. Lima, Solid State Commun. 309, 113836 (2020)

    Article  Google Scholar 

  46. S. Mahdavifar, S. Mahdavifar, R. Jafari, Phys. Rev. A 96, 052303 (2017)

    Article  ADS  Google Scholar 

  47. T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L.S. Quantum correlation and entanglement in the Heisenberg model with biquadratic interaction on square lattice. Eur. Phys. J. D 75, 28 (2021). https://doi.org/10.1140/epjd/s10053-021-00044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00044-4

Navigation