Skip to main content
Log in

Head-on collisional effects of ion acoustic waves in pair-ion plasma: topological and non-topological solitons

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The phenomena concerning head-on collision between the two topological and non-topological solitons are investigated in unmagnetized and collisionless plasma system consisting of weakly relativistic cold positive (\(H^{+}\), \({Xe}^{+}\) and \(K^{+}\)) and negative (\(H^{-}\), \({SF}_{6}^{-}\), \(O_{2}^{-}\) and \(C_{7}F_{14}^{-}\)) ion species with superthermal electrons. To do this, the two-sided Korteweg–de Vries (KdV) equations are derived using extended Poincaré–Lighthill–Kue method. The solutions of KdV equations are obtained by solitary ansatz technique. Productions as well as collisional effects of non-topological and topological solitons are investigated taking the experimentally obtained plasma parameters into accounts. The study reveals that the nonlinearity of non-topological solitons become more pronounced for \(K^{+}-C_{7}F_{14}^{-}\) plasma as compared to the other ionic species plasmas. The masses and densities of negative ion species play a vital role on the potential profiles of topological solitons. A new type large amplitude wave is produced in the colliding region due to collision depending on plasma parameters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing is not applicable to this article as no new data were created or analyzed in this study ]”.

References

  1. W. Oohara, D. Date, R. Hatakeyama, Phys. Rev. Lett. 95, 175003 (2005)

    ADS  Google Scholar 

  2. W. Oohara, R. Hatakeyama, Phys. Rev. Lett. 14, 91 (2003)

    Google Scholar 

  3. R. Hatakeyama, W. Oohara, Phys. Scr. T 116, 101 (2005)

    ADS  Google Scholar 

  4. H. Massey, Negative Ions, 3rd edn. (Cambridge University Press, Cambridge, 1976), p. 663

    Google Scholar 

  5. W. Swider, in Ionospheric Modeling, ed. by J.N. Korenkov (Birkhauser, Basel, 1988), p. 403

  6. YuI Portnyagin, V.N. Korpusov, YuK Chasovitin, A.I. Demin, N.M. Klyueva, N.S. Mikhovich, V.G. Chkalov, Adv. Space Res. 12, 121 (1992)

    ADS  Google Scholar 

  7. H.F. Beyer, V.P. ShevelKo, Introduction to the Physics of Highly Charged Ions (CRC Press, Talor and Francis group, LLC, Boca Raton, 2002)

    Google Scholar 

  8. P.H. Chaizy, H. Rème, J.A. Sauvaud, C. d’ Uston, R.P. Lin, D.E. Larson, D.L. Mitchell, K.A. Anderson, C.W. Carlson, A. Korth, D.A. Mendis, Nature (London) 49, 393 (1991)

    ADS  Google Scholar 

  9. R.A. Gottscho, C.E. Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986)

    ADS  Google Scholar 

  10. M. Bacal, G.W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979)

    ADS  Google Scholar 

  11. M.C. Kelley, The Earth’s Ionosphere plasma physics and electrodynamics, 2nd edn. (Academic Press is an imprint of Elsevier, Cambridge, 2009)

    Google Scholar 

  12. P.M. Banks, R.W. Schunk, W.J. Raitt, Ann. Rev. Earth Planet. Sci. 4, 381 (1996)

    ADS  Google Scholar 

  13. S.A. Elkiwali, E.K. El-Shewy, H.G. Abdelwahed, Phys. Plasmas 17, 052301 (2010)

    ADS  Google Scholar 

  14. W. Oohara, Y. Kuwabara, R. Hatakeyama, Phys. Rev. E 75, 056403 (2007)

    ADS  Google Scholar 

  15. H. Amemiya, B.M. Annaratone, J.E. Allen, Plasma Sour. Sci. Technol. 8, 179 (1999)

    ADS  Google Scholar 

  16. N. Franklin, Plasma Sour. Sci. Technol. 11, A31 (2002)

    ADS  Google Scholar 

  17. YuI Portnyagin, O.F. Klyuev, A.A. Shidlovsky et al., Adv. Space Res. 11, 89 (1991)

    ADS  Google Scholar 

  18. R. Ichiki, S. Yoshimura, T. Watanabe, Y. Nakamura, Y. Kawai, Phys. Plasmas 9, 4481 (2002)

    ADS  Google Scholar 

  19. J.L. Cooney, D.W. Aossey, J.E. Williams et al., Plasma Sour. Sci. Technol. 2, 73 (1993)

    ADS  Google Scholar 

  20. M. Bacal, G.W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979)

    ADS  Google Scholar 

  21. R.A. Gottscho, C.E. Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986)

    ADS  Google Scholar 

  22. H. Kokura, S. Yoneda, K. Nakamura, N. Mitsuhira, M. Nakamura, H. Sugai, Jpn. J. Appl. Phys. Part 1 38, 5256 (1999)

    Google Scholar 

  23. L. Boufendi, A. Bouchoule, Plasma Sour. Sci. Technol. 11, A211 (2002)

    ADS  Google Scholar 

  24. W.F. El-Taibany, N.A. El-Bedwehy, E.F. El-Shamy, Phys. Plasmas 18, 033703 (2011)

    ADS  Google Scholar 

  25. T.S. Gill, P. Bala, H. Kaur, N.S. Saini, S. Bansal, J. Kaur, Eur. Phys. J. D 31, 91 (2004)

    ADS  Google Scholar 

  26. N. Akhtar, W.F. El-Taibany, S. Mahmood, Phys. Lett. A 377, 1282 (2013)

    ADS  MathSciNet  Google Scholar 

  27. S. Hussain, N. Akhtar, Phys. Plasmas 18, 082107 (2011)

    ADS  Google Scholar 

  28. S.Y. El-Monier, A. Atteya, IEEE. Trans. Plasma Sci. 46, 4 (2018)

    Google Scholar 

  29. A. Atteya, E.E. Behery, W.F. El-Taibany, Eur. Phys. J. Plus 132, 109 (2017)

    Google Scholar 

  30. A. Saha, P. Chatterjee, Phys. Plasmas 21, 022111 (2014)

    ADS  Google Scholar 

  31. G. Nicolaou, G. Livadiotis, Astrophys. Space. Sci. 361, 11 (2016)

    Google Scholar 

  32. R. Ali, A. Saha, P. Chatterjee, Indian J. Phys. 91, 689 (2017)

    ADS  Google Scholar 

  33. C.M. Hammond, W.C. Feldman, J.L. Phillips, B.E. Goldstein, A. Balogh, J. Geophys. Res. 100, 7881 (1995)

    ADS  Google Scholar 

  34. F.B. Rizzato, R.S. Schneider, D. Dillenburg, Phys. Plasmas 29, 1127 (1987)

    Google Scholar 

  35. P. Schippers et al., J. Geophys. Res. 113, A07208 (2008)

    ADS  Google Scholar 

  36. T.K. Baluku, M.A. Hellberg, Phys. Plasmas 19, 012106 (2012)

    ADS  Google Scholar 

  37. J.K. Xue, Phys. Rev. E 69, 016403 (2004)

    ADS  Google Scholar 

  38. J.N. Han, S.L. Du, W.S. Duan, Phys. Plasmas 15, 112104 (2008)

    ADS  Google Scholar 

  39. J.N. Han, X.X. Yang, D.X. Tian, W.S. Duan, Phys. Lett. A 372, 4817 (2008)

    ADS  Google Scholar 

  40. N.S. Saini, K. Singh, Phys. Plasmas 23, 103701 (2016)

    ADS  Google Scholar 

  41. M.S. Alam, M.R. Talukder, Plasma Phys. Rep. 45, 1 (2019a)

    Google Scholar 

  42. S.F. Savin, L.G. D’yachkov, M.I. Myasnikov, O.F. Petrov, M.M. Vasiliev, V.E. Fortov, AYu. Kaleri, A.I. Borisenko, G.E. Morfil, JETP Lett. 94, 508 (2011)

    ADS  Google Scholar 

  43. O.F. Petrov, M.I. Myasnikov, L.G. D’yachkov, M.M. Vasiliev, V.E. Fortov, S.F. Savin, AYu. Kaleri, A.I. Borisenko, G.E. Morfill, Phys. Rev. E 86, 036404 (2012)

    ADS  Google Scholar 

  44. L. D’yachkov, T. Ramazanov, O. Petrov, M. Vasiliev et al., EPL 116, 45001 (2016)

    ADS  Google Scholar 

  45. M. Myasnikov, L. D’yachkov, O. Petrov, M. Vasiliev, V. Fortov, S. Savin, E. Serova, JETP 124, 318 (2017)

    ADS  Google Scholar 

  46. L.G. D’yachkov, T.S. Ramazanov, O.F. Petrov et al., Contrib. Plasma Phys. 58, 940 (2018)

    ADS  Google Scholar 

  47. S. Savin, L. D’yachkov, M. Vasiliev, O. Petrov, V. Fortov, Tech. Phys. Lett. 35, 1144 (2009)

    ADS  Google Scholar 

  48. S. Savin, L. D’yachkov, M. Vasiliev, O. Petrov, V. Fortov, EPL 88, 64002 (2009)

    ADS  Google Scholar 

  49. S. Savin, L. D’yachkov, M. Myasnikov, O. Petrov, V. Fortov, Phys. Scr. 85, 035403 (2012)

    ADS  Google Scholar 

  50. T. Ott, H. Löwen, M. Bonitz, Phys. Rev. E 89, 013105 (2014)

    ADS  Google Scholar 

  51. K.N. Dzhumagulova, R.U. Masheeva, T.S. Ramazanov, Z. Donkó, Phys. Rev. E 89, 033104 (2014)

    ADS  Google Scholar 

  52. T. Ott, M. Bonitz, P. Hartmann, Z. Donkó, Phys. Rev. E 83, 046403 (2011)

    ADS  Google Scholar 

  53. T. Ott, H.H. Kählert, A. Reynolds, M. Bonitz, Phys. Rev. Lett. 108, 255002 (2012)

    ADS  Google Scholar 

  54. L.-J. Hou, P.K. Shukla, A. Piel, Z.L. Miskovic, Phys. Plasmas 16, 073704 (2009)

    ADS  Google Scholar 

  55. T. Ott, H. Löwen, M. Bonitz, Phys. Rev. Lett. 111, 065001 (2013)

    ADS  Google Scholar 

  56. K. Jiang, Y.-H. Song, Y.-N. Wang, Phys. Plasmas 14, 103708 (2007)

    ADS  Google Scholar 

  57. T. Ott, M. Bonitz, Phys. Rev. Lett. 107, 135003 (2011)

    ADS  Google Scholar 

  58. M. Bonitz, Z. Donkó, T. Ott, H. Kählert, P. Hartmann, Phys. Rev. Lett. 105, 055002 (2010)

    ADS  Google Scholar 

  59. H. Kählert, J. Carstensen, M. Bonitz, H. Löwen, F. Greiner, A. Piel, Phys. Rev. Lett. 109, 155003 (2012)

    ADS  Google Scholar 

  60. M. Bonitz, H. Kählert, T. Ott, H. Löwen, Plasma Sour. Sci. Technol 22, 015007 (2013)

    ADS  Google Scholar 

  61. P. Hartmann, Z. Donkó, T. Ott, H. Kählert, M. Bonitz, Phys. Rev. Lett. 111, 155002 (2013)

  62. K.N. Dzhumagulova, R.U. Masheyeva, T. Ott, P. Hartmann, T.S. Ramazanov, M. Bonitz, Z. Donkó, Phys. Rev. 93, 063209 (2016)

    Google Scholar 

  63. S.H. Kim, R.L. Merlino, Phys. Rev. E 76, 035401 (2007)

    ADS  Google Scholar 

  64. S.H. Kim, J.K. Meyer, R.L. Merlino, http://meetings.aps.org/link/BAPS.2012.DPP.BP8 (2012)

  65. M. Rosenberg, R.L. Merlino, J. Plasma Phys. 79, 949 (2013). https://doi.org/10.1017/S0022377813000858

    Article  ADS  Google Scholar 

  66. D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations (Oxford University Press, Oxford, 2007)

    MATH  Google Scholar 

  67. M. Mirzazadeh, J. Egyp. Math. Soc. 23, 292–296 (2014). https://doi.org/10.1016/j.joems.2014.06.005

    Article  MathSciNet  Google Scholar 

  68. H. Triki, A. Yildirim, T. Hayat, O.M. Aldossar, A. Biswas, Proc. Roman. Acad. Ser. A 13, 103 (2012)

    Google Scholar 

  69. H. Triki, A.M. Wazwaz, Phys. Lett. A. 373, 2162 (2009)

    ADS  Google Scholar 

  70. A. Biswas, Appl. Math. Lett. 22, 208 (2009)

    MathSciNet  Google Scholar 

  71. M.S. Alam, M.R. Talukder, Braz. J. Phys. 49, 198 (2019b). 10.1007/s13538-018-0605-5

    ADS  Google Scholar 

  72. M.S. Alam, M.R. Talukder, Plasma Res. Express 2, 015014 (2020)

    ADS  Google Scholar 

  73. R. Ichiki, M. Shindo, S. Yoshimura, T. Watanabe, Y. Kawai, Phys. Plasmas 8, 4275 (2001)

    ADS  Google Scholar 

  74. S.A. Ema, M.R. Hossen, A.A. Mamun, Phys. Plasmas 22, 092108 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the honorable editors and reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

MSA has been derived equations, drawn figures, prepared draft of the manuscript. MRT has been supervised the work and revised the manuscript for publication.

Corresponding author

Correspondence to M. S. Alam.

Appendix A

Appendix A

The number density of Maxwellian electrons is [According as Ref. 74]

$$\begin{aligned} n_{e}=e^{-\frac{e{\Phi }}{\kappa _{B}T_{e}}}. \end{aligned}$$
(A1)

The normalized form of (A1) can be written as:

$$\begin{aligned}&\displaystyle n_{e}=e^{-\phi }\approx 1-\phi +\frac{1}{2}\phi ^{2}+\cdots . \nonumber \\&\displaystyle \hbox {That is}, \qquad n_{e}\approx 1+a\phi +b\phi ^{2}+\cdots . \end{aligned}$$
(A2)
$$\begin{aligned}&\displaystyle \hbox {Where} \,\, a=-1 \, \hbox { and } \, b=\frac{1}{2} \end{aligned}$$
(A3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.S., Talukder, M.R. Head-on collisional effects of ion acoustic waves in pair-ion plasma: topological and non-topological solitons. Eur. Phys. J. D 75, 25 (2021). https://doi.org/10.1140/epjd/s10053-020-00006-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00006-2

Navigation