Skip to main content
Log in

Interaction between iron ion and dipole carbon monoxide inside spherical cavities

  • Regular Article - Topical Issue
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The interactions that occur within hemeproteins are important for biological systems and they are of interest for understanding living systems. In this way, it is important to know the vibrational and electrostatic interactions in this system. In this article, a study is made using a new approach to describe the interaction between iron ions and carbon monoxide inside spherical cavities that mimic volumes of protein cavities in three different media (vacuum, water and ice). We use an alternative trial wavefunction as an ansatz in the Variational Method for the calculation of the energy for a confined ion–dipole system. This trial function is inspired by Supersymmetric Quantum Mechanics. One of the results obtained is the value of the ground state energy of this interaction in a vacuum inside a spherical cavity of radius approximately equal to 12 Bohr radius obtained by the Variational Method. This result is compared with the energy value obtained by the second order Moller–Plesset perturbative method and there is a difference of approximately 1.9 10\(^{-3}\) hartree (3.87\( \%\)).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. D. Shapiro, R.A. Goldbeck, D. Che, R.M. Esquerra, S.J. Paquette, D.S. Kliger, Biophys. J. 68, 326 (1995)

    Article  ADS  Google Scholar 

  2. B. Kushkuley, S.S. Stavrov, Biophys. J. 70, 1214 (1996)

    Article  ADS  Google Scholar 

  3. M. Tsubaki, R.B. Srivastava, N.T. Yu, Biochemistry 21, 1132 (1982)

    Article  Google Scholar 

  4. T.G. Spiro, A.V. Soldatova, G. Balakrishnan, Coord. Chem. Rev. 257, 511 (2013)

    Article  Google Scholar 

  5. C.E. Martin, C.S. Castan, F.J.L. Garriga, A.B.C. Badia, Drug Discov. Today Technol. 17, 22 (2015)

    Article  Google Scholar 

  6. Y. Sun, W. Zeng, A. Benabbas, X. Ye, I. Denisov, S.G. Sligar, J. Du, J.H. Dawson, P.M. Champion, Biochemistry 52, 5941 (2013)

    Article  Google Scholar 

  7. C. Weber, D.J. Cole, D.D. O’Regan, M.C. Payne, Proc. Natl. Acad. Sci. 111, 5790 (2014)

    Article  ADS  Google Scholar 

  8. L.A. Solomon, J.B. Kronenberg, H.C. Fry, J. Am. Chem. Soc. 139, 8497 (2017)

    Article  Google Scholar 

  9. O. González-Blanco, V. Branchadell, J. Chem. Phys. 110, 778 (1999)

    Article  ADS  Google Scholar 

  10. R.M. Sosa, P. Gardiol, G. Beltrame, Int. J. Quantum Chem. 69, 371 (1998)

    Article  Google Scholar 

  11. P.W. Villalta, D.G. Leopold, J. Chem. Phys. 98, 7730 (1993)

    Article  ADS  Google Scholar 

  12. E. Ley-Koo, Rev. Mex. de FÃsica 64, 326 (2018)

    Article  Google Scholar 

  13. R.L. Koder, J.R. Anderson, L.A. Solomon, K.S. Reddy, C.C. Moser, P.L. Dutton, Nature 458, 305 (2009)

    Article  ADS  Google Scholar 

  14. F. Nastri, M. Chino, O. Maglio, A. Bhagi-Damodaran, Y. Lu, A. Lombardi, Chem. Soc. Rev. 45, 5020 (2016)

    Article  Google Scholar 

  15. C.W. Rausch, M. Feola, Extra pure semi-synthetic blood substitute (1992), US Patent 5,084,558

  16. K. Yamada, K. Yokomaku, M. Kureishi, M. Akiyama, K. Kihira, T. Komatsu, Sci. Rep. 6, 36782 (2016)

    Article  ADS  Google Scholar 

  17. F.R. Silva, E. Drigo Filho, Chem. Phys. Lett. 498, 198 (2010)

    Article  ADS  Google Scholar 

  18. L.I. Schiff, Quantum Mechanics 1968 (McGraw-Hill, New York, 1968)

    Google Scholar 

  19. H.D.O. Batael, E. Drigo Filho, Theoretical Chemistry Accounts 137 (2018)

  20. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Drigo Filho, R.M. Ricotta, Phys. Lett. A 320, 95 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. L.E. Gendenshtein, I.V. Krive, Phys. Uspekhi 28, 645 (1985)

    Article  ADS  Google Scholar 

  23. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson et al., Inc., Wallingford CT (2009)

  24. S.A. Cruz, R. Colín-Rodríguez, Int. J. Quantum Chem. 109, 3041 (2009)

    Article  ADS  Google Scholar 

  25. F. Weinhold, J. Chem. Phys. 54, 530 (1971)

    Article  ADS  Google Scholar 

  26. R. Colín-Rodríguez, S.A. Cruz, J. Phys. B Atomic Mol. Opt. Phys. 43, 235102 (2010)

    Article  ADS  Google Scholar 

  27. R. Colín-Rodríguez, C. Díaz-García, S. Cruz, J. Phys. B Atomic Mol. Opt. Phys. 44, 241001 (2011)

    Article  ADS  Google Scholar 

  28. G.M. Longo, S. Longo, D. Giordano, Plasma Sources Sci. Technol. 24, 065019 (2015)

    Article  ADS  Google Scholar 

  29. J.F. da Silva, F.R. Silva, E. Drigo Filho, Int. J. Quantum Chem. 116, 497 (2016)

    Article  Google Scholar 

  30. L. Infeld, T. Hull, Rev. Mod. Phys. 23, 21 (1951)

    Article  ADS  Google Scholar 

  31. C.S. Jia, J.Y. Wang, S. He, L.T. Sun, J. Phys. A Math. Gen. 33, 6993 (2000)

    Article  ADS  Google Scholar 

  32. C. Sukumar, J. Phys. A Math. Gen. 18, 2917 (1985)

    Article  ADS  Google Scholar 

  33. R. Dutt, A. Khare, U.P. Sukhatme, Am. J. Phys. 56, 163 (1988)

    Article  ADS  Google Scholar 

  34. G. Borges, E. Drigo Filho, R. Ricotta, Phys. A Stat. Mech. Appl. 389, 3892 (2010)

    Article  Google Scholar 

  35. M. Ioffe, E. Kolevatova, D. Nishnianidze, Phys. Lett. A 380, 3349 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Cevik, M. Gadella, S. Kuru, J. Negro, Phys. Lett. A 380, 1600 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Drigo Filho, R.M. Ricotta, Phys. Lett. A 269, 269 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  38. G.R.P. Borges, E. Drigo Filho, Int. J. Mod. Phys. A 16, 4401 (2001)

    Article  ADS  Google Scholar 

  39. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, Cambridge, 2011)

    Google Scholar 

  40. Appendix. A table of dipole moments, Vol. 30 (The Royal Society of Chemistry, 1934), https://doi.org/10.1039/TF93430BB00I

  41. M. Milani, A. Pesce, Y. Ouellet, S. Dewilde, J. Friedman, P. Ascenzi, M. Guertin, M. Bolognesi, J. Biol. Chem. 279, 21520 (2004)

    Article  Google Scholar 

  42. J. Liang, C. Woodward, H. Edelsbrunner, Protein Sci. 7, 1884 (1998)

    Article  Google Scholar 

  43. I. Boron, J.P. Bustamante, K.S. Davidge, S. Singh, L.A. Bowman, M. Tinajero-Trejo, S. Carballal, R. Radi, R.K. Poole, K. Dikshit et al., F1000Research 4 (2015)

  44. S.S. Stavrov, Biomed. Spectrosc. Imaging 3, 261 (2014)

    Article  Google Scholar 

  45. S. Sonavane, P. Chakrabarti, PLoS Comput. Biol. 4, e1000188 (2008)

    Article  ADS  Google Scholar 

  46. V. Barone, M. Cossi, J. Phys. Chem. A 102, 1995 (1998)

    Article  Google Scholar 

  47. R. Improta, V. Barone, G. Scalmani, M.J. Frisch, J. Chem. Phys. 125, 054103 (2006)

    Article  ADS  Google Scholar 

  48. P. Bohleber, N. Wagner, O. Eisen, Cold Reg. Sci. Technol. 83, 13 (2012)

    Article  Google Scholar 

  49. C.G. Malmberg, A.A. Maryott, J. Res. Natl. Bur. Stand. 56, 1 (1956)

    Article  Google Scholar 

  50. M.M. Gonzalez, K. Bravo-Rodriguez, R. Suardiaz, J.M.G. de la Vega, L.A. Montero, E. Sanchez-Garcia, R. Crespo-Otero, Theoretical Chemistry Accounts 134, (2015)

  51. D.L. Nelson, A.L. Lehninger, M.M. Cox, Lehninger Principles of Biochemistry (Macmillan, New York, 2008)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Gridunesp for making the Gaussian 09 software available and, also, we thank Capes and FAPESP (2017/01757-9) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Josimar Fernando da Silva.

Additional information

Guest editors: C.N. Ramachandran, Vincenzo Aquilanti, Henry Ed Montgomery and N. Sathyamurthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.F., Caruso, Í.P. & Drigo Filho, E. Interaction between iron ion and dipole carbon monoxide inside spherical cavities. Eur. Phys. J. D 75, 22 (2021). https://doi.org/10.1140/epjd/s10053-020-00018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00018-y

Navigation