Skip to main content
Log in

The quantum Jarzynski inequality for superconducting optical cavities

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The quantum version of Jarzynski equality was theoretically investigated for the work operator in the interaction picture. Since the Hamiltonian is time-dependent, it does not commute with itself at different times, then we have solved analytically its dynamics with lie-algebraic techniques. The physical object is a superconducting optical cavity. It was shown that the quantum dynamics of a cavity does not obey Jarzynski’s equality in the small temperature regime \((\beta \omega _0 \hbar \gg 1)\), if we consider a quantum work operator defined in a protocol interaction picture. The case of higher temperatures \((\beta \omega _0 \hbar \ll 1)\) we are in Jarzynski regime and Jarzynski equality can be used to obtain statistical information about work done on the cavity. Since, for all used parameters, the state is a thermal state and its dynamics is of the harmonic oscillator, then this quantum regime is related to the protocol action. The protocol can be implemented by injecting a field in the cavity, thus it creates quantum resources.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The manuscript has no supplementary data associated with it, being a theoretical work and as the analytical solution is presented, all the results obtained in this research are in the manuscript.]

References

  1. L.E. Ballentine, Y. Yang, J.P. Zibin, Phys. Rev. A 50, 2854 (1994)

    Article  ADS  Google Scholar 

  2. L.E. Ballentine, S.M. McRae, Phys. Rev. A 58, 1799 (1998)

    Article  ADS  Google Scholar 

  3. L.E. Ballentine, Phys. Rev. A 63, 024101 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  4. A.C. Oliveira, Classical limit of quantum mechanics induced by continuous measurements. Physica A 393, 655 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Ozawa, Phys. Rev. A 67, 042105 (2003)

    Article  ADS  Google Scholar 

  6. A.C. Oliveira, J.G. Peixoto de Faria, M.C. Nemes, Phys Rev. E 73, 046207 (2006)

    Article  ADS  Google Scholar 

  7. R.M. Angelo, Low-resolution measurements induced classicality 0809, 4616 (2008)

  8. A.C. de Oliveira, T.O. Zolacir jr., N.S. Correia, Quantum noise and its importance to the quantum classical transition problem: energy measurement aspects, in: XVI ENMC, 2013, Ilhéus. Anais do 16 EMC / 4 ECTM / 3 ERMAC (2013)

  9. A.C. Oliveira, M.C. Nemes, K.M.F. Romero, Phys Rev. E 68, 036214 (2003)

    Article  ADS  Google Scholar 

  10. H.C.F. Lemos, A.C.L. Almeida, B. Amaral, A.C. Oliveira, Phys. Lett. A 382, 823–836 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  11. G. Sadiek, S. Kais, J. Phys. B At. Mol. Opt. Phys. 46, 245501 (2013)

    Article  ADS  Google Scholar 

  12. A. Arrasmith, A. Albrecht, W.H. Zurek, arXiv:1708.09353

  13. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, New York, 2002)

    Book  Google Scholar 

  14. Cristhiano Duarte, Barbara Amaral, Resource theory of contextuality for arbitrary prepare-and-measure experiment (2017). arXiv:1711.10465v2

  15. M. Reis e Silva Jr., A.C. Oliveira, SBFoton International Optics and Photonics Conference (SBFoton IOPC) 1–5 (2018)

  16. J.O.R. de Paula, J.G.P. de Faria, J.G.G. de Oliveira Jr., R.C. Falcao, A.C. Oliveira, Physica A 520, 26–34 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  17. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  18. C. Jarzynski, Eur. Phys. J B 64, 331 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011)

    Article  ADS  Google Scholar 

  20. E. Boksenbojm, B. Wynants, C. Jarzynski, Physica A 389, 4406 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  21. G.E. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  22. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988–992 (2010). https://doi.org/10.1038/nphys1821

    Article  Google Scholar 

  23. S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H.T. Quan, K. Kim, Nat. Phys. 11, 193–199 (2015). https://doi.org/10.1038/nphys3197

    Article  Google Scholar 

  24. F. Douarche, S. Ciliberto, A. Petrosyan, I. Rabbiosi, EPL 70(5) (2005)

  25. N.C. Harris, Y. Song, C.-H. Kiang, Phys. Rev. Lett. 99, 068101 (2007)

    Article  ADS  Google Scholar 

  26. A. Engel, R. Nolte, EPL 79, 10003 (2007)

    Article  ADS  Google Scholar 

  27. P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007)

    Article  ADS  Google Scholar 

  28. L. Mazzola, G. De Chiara, M. Paternostro, Phys. Rev. Lett. 110, 230602 (2013)

    Article  ADS  Google Scholar 

  29. R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev. Lett. 110, 230601 (2013)

    Article  ADS  Google Scholar 

  30. P. Talkner, P. Hänggi, Phys. Rev. E 93, 022131 (2016)

    Article  ADS  Google Scholar 

  31. P. Hänggi, P. Talkner, Nat. Phys. 11, 108 (2015)

    Article  Google Scholar 

  32. D. Valente, F. Brito, R. Ferreira, T. Werlang (2017). arXiv:1709.09677v1

  33. S. Deffner, J.P. Paz, W.H. Zurek, Phys. Rev. E 94, 010103(R) (2016)

    Article  ADS  Google Scholar 

  34. V.A. Ngo, I. Kim, T.W. Allen, S.Y. Noskov, J. Chem. Theory Comput. 12, 1000 (2016)

    Article  Google Scholar 

  35. See Appendix for details of the calculations

  36. L.D. Landau, E.M. Lifshitz, Statistical Physics (Butterworth-Heinemann, Oxford, 2001), p. 30

    Google Scholar 

  37. A.C. Oliveira, A.R.B. de Magalhães, J.G.P. De Faria, Physica A 391, 5082–5089 (2012)

    Article  ADS  Google Scholar 

  38. A.J. Roncaglia, F. Cerisola, J.P. Paz, Phys. Rev. Lett. 113, 250601 (2014)

    Article  ADS  Google Scholar 

  39. S. An et al., Nat. Phys. 11, 193 (2015)

    Article  Google Scholar 

  40. D. Cavalcanti, J.G. Oliveira Jr., J.G.P. de Faria, M.O.T. Cunha, M.F. Santos, Phys. Rev. A 74, 042328 (2006)

    Article  ADS  Google Scholar 

  41. J.G.G. de Oliveira Jr., J.G.P. de Faria, M.C. Nemes, Phys. Lett. A 375, 4255–4260 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RCF and ACO gratefully acknowledge the support of Brazilian agency Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) through grant No. APQ-01366-16.

Author information

Authors and Affiliations

Authors

Contributions

As a master’s student, JORP has helped on the calculations, the data organization, and participated in all discussions and computational work. JGPF has done the hard part of the Lie calculations and participated in all discussions. JGOJ has structured the work in the present form and participated in all discussions. RCF participated in all discussions, helped with the calculations and was also JORP’s co-supervisor. ACO conceived of the presented idea, participated in all discussions, coordinated the group, helped with the calculations and with the computational work. Also wrote the article and was JORP’s advisor.

Corresponding author

Correspondence to Adélcio C. Oliveira.

Appendices

Appendix I: Time evolution operator

The Hamiltonian is given by

$$\begin{aligned} H\left( t\right) =\hbar \omega _{0} \left( a^{\dag }a+\frac{1}{2}\right) +\sqrt{ \hbar }\alpha \left( t\right) \left( a^{\dag }+a\right) , \end{aligned}$$
(20)

where \(\alpha \left( t\right) =\) \(\sqrt{\frac{1}{2\omega _{0} }}lvt\). The group \( \{1,a^{\dag }a,a^{\dag },a\}\) form a closed algebra, thus we can write the time evolution operator as

$$\begin{aligned} U\left( t\right) =e^{\zeta \left( t\right) a^{\dag }}e^{-i\Omega \left( t\right) a^{\dag }a}e^{\xi \left( t\right) a}e^{\Gamma \left( t\right) }. \end{aligned}$$
(21)

Since it must obeys

$$\begin{aligned} \frac{d}{dt}U=-\frac{i}{\hbar }H\left( t\right) U\left( t\right) , \end{aligned}$$
(22)

then we have

$$\begin{aligned} \frac{d}{dt}U= & {} \left( \dot{\zeta }a^{\dag }+\dot{\Gamma } \right) U-i\dot{\Omega }e^{\zeta \left( t\right) a^{\dag }}a^{\dag }ae^{-i\Omega \left( t\right) a^{\dag }a}e^{\xi \left( t\right) a}e^{\Gamma \left( t\right) }\nonumber \\&+\dot{\xi }e^{\zeta \left( t\right) a^{\dag }}e^{-i\Omega \left( t\right) a^{\dag }a}ae^{\xi \left( t\right) a}e^{\Gamma \left( t\right) }. \end{aligned}$$
(23)

After some algebra we can write (23) as

$$\begin{aligned} \frac{d}{dt}U=\left[ \left( \dot{\zeta }+i\dot{\Omega }\zeta \right) a^{\dag }-i\dot{\Omega }a^{\dag }a+\dot{\xi } e^{i\Omega }a+\dot{\Gamma }-{\dot{\xi \zeta }}e^{i\Omega }\right] U.\nonumber \\ \end{aligned}$$
(24)

Comparing (22) with (24) we find

$$\begin{aligned} -i\dot{\Omega }=-i\omega _{0} \Longrightarrow \Omega \left( t\right) =\omega _{0} t, \end{aligned}$$
(25)

where we have assume that \(\Omega \left( 0\right) =0\). Also we have

$$\begin{aligned} \dot{\zeta }+i\omega _{0} \zeta= & {} -\frac{i}{\sqrt{\hbar }}\alpha \left( t\right) , \end{aligned}$$
(26)
$$\begin{aligned} \dot{\xi }e^{i\omega _{0} t}= & {} -\frac{i}{\sqrt{\hbar }}\alpha \left( t\right) , \end{aligned}$$
(27)
$$\begin{aligned} \dot{\Gamma }-\dot{\xi }\zeta e^{i\omega _{0} t}= & {} 0. \end{aligned}$$
(28)

By setting \(\zeta \left( t\right) =z\left( t\right) e^{-i\omega _{0} t}\) and using (26) we obtain

$$\begin{aligned} \dot{\zeta }=\dot{z}e^{-i\omega _{0} t}-i\omega _{0} \zeta \left( t\right) \end{aligned}$$
(29)

and

$$\begin{aligned} \dot{z}=-\frac{i}{\sqrt{\hbar }}\alpha \left( t\right) e^{i\omega _{0} t}. \end{aligned}$$
(30)

Now, from (27), we get

$$\begin{aligned} \dot{\xi }=-\frac{i}{\sqrt{\hbar }}\alpha \left( t\right) e^{-i\omega _{0} t} \end{aligned}$$
(31)

We note that \(\alpha \in \mathfrak {R}\), then

$$\begin{aligned} i\dot{\xi }=\left( i\dot{z}\right) ^{*}\Longrightarrow \dot{\xi }=-\dot{z}^{*}\Longrightarrow \xi =-z^{*} \end{aligned}$$
(32)

thus

$$\begin{aligned} \zeta \left( t\right) =-\xi ^{*}\left( t\right) e^{-i\omega _{0} t} \end{aligned}$$
(33)

and

$$\begin{aligned} \dot{\xi }=-\frac{i}{\sqrt{\hbar }}\alpha \left( t\right) e^{-i\omega _{0} t} \end{aligned}$$
(34)

Considering (34) and the initial condition as initial \(\xi \left( 0\right) =0\) then we obtain

$$\begin{aligned} \xi \left( t\right) =-i\int \nolimits _{0}^{t}\frac{1}{\sqrt{\hbar }}\alpha \left( t^{\prime }\right) e^{-i\omega _{0} t^{\prime }}dt^{\prime } \end{aligned}$$
(35)

If we set \(\alpha =\frac{lvt}{\sqrt{2\omega _{0} }}\) then

$$\begin{aligned} \xi \left( t\right)= & {} -i\int \nolimits _{0}^{t}\frac{lvt^{\prime }}{\sqrt{ 2\hbar \omega _{0} }}e^{-i\omega _{0} t^{\prime }}dt^{\prime }\nonumber \\= & {} \frac{lv}{\sqrt{2\hbar \omega _{0} ^{3}}}\left[ te^{-i\omega _{0} t}-\frac{i}{\omega _{0} }\left( e^{-i\omega _{0} t}-1\right) \right] . \end{aligned}$$
(36)

Now we use the solution obtained in (36) into (33) and we obtain

$$\begin{aligned} \zeta \left( t\right) =-\frac{lv}{\sqrt{2\hbar \omega _{0} ^{3}}}\left[ t+\frac{i }{\omega _{0} }\left( 1-e^{-i\omega _{0} t}\right) \right] \end{aligned}$$
(37)

It is easy to show that U(t) is unitary, we observe that

$$\begin{aligned} U^{\dag }\left( t\right) U\left( t\right)= & {} e^{\xi ^{*}\left( t\right) a^{\dag }}e^{i\Omega \left( t\right) a^{\dag }a}e^{\zeta ^{*}\left( t\right) a}e^{\Gamma ^{*}\left( t\right) }e^{\zeta \left( t\right) a^{\dag }}\nonumber \\&e^{-i\Omega \left( t\right) a^{\dag }a}e^{\xi \left( t\right) a}e^{\Gamma \left( t\right) } \end{aligned}$$
(38)

As \(\Omega \left( t\right) =\omega _{0} t\), then

$$\begin{aligned} U^{\dag }\left( t\right) U\left( t\right)= & {} e^{\Gamma ^{*}\left( t\right) +\Gamma \left( t\right) +\left| \zeta \left( t\right) \right| ^{2}}e^{\left[ \left( \xi ^{*}\left( t\right) +\zeta \left( t\right) e^{i\omega _{0} t}\right) a^{\dag }\right] }\nonumber \\&e^{\left[ \left( \zeta ^{*}\left( t\right) e^{-i\omega _{0} t}+\xi \left( t\right) \right) a\right] }. \end{aligned}$$
(39)

On the other hand we have

$$\begin{aligned} \xi ^{*}\left( t\right) +\zeta \left( t\right) e^{i\omega _{0} t}= & {} \xi ^{*}\left( t\right) +\left( -\xi ^{*}\left( t\right) e^{-i\omega _{0} t}\right) e^{i\omega _{0} t}\nonumber \\= & {} 0 \end{aligned}$$
(40)

and

$$\begin{aligned} \zeta ^{*}\left( t\right) e^{-i\omega _{0} t}+\xi \left( t\right)= & {} \left( -\xi ^{*}\left( t\right) e^{-i\omega _{0} t}\right) ^{*}e^{-i\omega _{0} t}+\xi \left( t\right) \nonumber \\= & {} 0 \end{aligned}$$
(41)

then

$$\begin{aligned} \left| \zeta \left( t\right) \right| ^{2}=\left| \xi \left( t\right) \right| ^{2}. \end{aligned}$$
(42)

Also note that \(\dot{\Gamma }+\dot{\xi }\xi ^{*}=0\) and \(\dot{\Gamma ^{*}}+\dot{\xi ^{*}}\xi =0\) then

$$\begin{aligned} \dot{\Gamma }+{\dot{\Gamma ^{*}}}+\dot{\xi }\xi ^{*}+{\dot{\xi ^{*}}}\xi =0 \end{aligned}$$
(43)

Then we obtain

$$\begin{aligned} \frac{d}{dt}\left( \Gamma +\Gamma ^{*}+\left| \xi \right| ^{2}\right) =0. \end{aligned}$$
(44)

Then we observe that \(\Gamma +\Gamma ^{*}+\left| \xi \right| ^{2}\) is constant and \(\Gamma \left( 0\right) =\xi \left( 0\right) =0,\) and \(\Gamma +\Gamma ^{*}+\left| \xi \right| ^{2}=0\). Finally we conclude that U(t) is unitary.

Appendix II: Work operator

The work operator can be defined [26] as

$$\begin{aligned} \Delta E=U^{\dag }(t)H\left( t\right) U(t)-H_{0}. \end{aligned}$$
(45)

We need to evaluate the quantity \(\widetilde{\Delta E}\), where

$$\begin{aligned} \widetilde{\Delta E}\left( \beta ,t\right) =\left\langle \beta \left| U^{\dag }(t)H\left( t\right) U(t)-H_{0}\right| \beta \right\rangle , \end{aligned}$$
(46)

then

$$\begin{aligned} \widetilde{\Delta E}\left( \beta ,t\right)= & {} e^{{\overline{\rho }}}\left\langle \beta \left| e^{i\omega _{0} ta^{\dag }a}e^{\zeta ^{*}a}\left[ \hbar \omega _{0} \left( a^{\dag }a+\frac{1}{2}\right) \right. \right. \right. \nonumber \\&\left. \left. \left. +\sqrt{\hbar }\alpha \left( a^{\dag }+a\right) \right] e^{\zeta a^{\dag }}e^{-i\omega _{0} ta^{\dag }a}\right| \beta \right\rangle +\nonumber \\&-\hbar \omega _{0} \left( \beta ^{*}\beta +\frac{1}{2}\right) , \end{aligned}$$
(47)

where \(e^{{\overline{\rho }}}=e^{\Gamma ^{*}}e^{\Gamma }e^{\xi ^{*}\beta ^{*}}e^{\xi \beta }\). The action of the operator \(exp({i\theta a^{\dag }a})\) on a coherent state can be easily calculated as

$$\begin{aligned} e^{i\theta a^{\dag }a}|\beta \rangle= & {} e^{-\frac{\left| \beta \right| ^{2}}{2}}\sum \frac{\beta ^{n}}{\sqrt{n!}}e^{i\theta n}|\beta \rangle \\= & {} e^{-\frac{\left| \beta \right| ^{2}}{2}}\sum \frac{\left( \beta e^{i\theta }\right) ^{n}}{ \sqrt{n!}}|\beta \rangle =|\beta e^{i\theta }\rangle . \end{aligned}$$

Then we can write the work operator as

$$\begin{aligned} \widetilde{\Delta E}\left( \beta ,t\right)= & {} e^{\Gamma ^{*}}e^{\Gamma }e^{\xi ^{*}\beta ^{*}}e^{\xi \beta }\left\langle \beta e^{-i\omega _{0} t}\left| e^{\zeta ^{*}a}\left[ \hbar \omega _{0} \left( a^{\dag }a+\frac{1 }{2}\right) \right. \right. \right. \nonumber \\&\left. \left. \left. +\sqrt{\hbar }\alpha \left( a^{\dag }+a\right) \right] e^{\zeta a^{\dag }}\right| \beta e^{-i\omega _{0} t}\right\rangle \nonumber \\&-\hbar \omega _{0} \left( \beta ^{*}\beta +\frac{1}{2}\right) . \end{aligned}$$
(48)

Now we use the BCH formula and we write the products as

$$\begin{aligned} e^{\zeta ^{*}a}a^{\dag }e^{\zeta a^{\dag }}= & {} e^{\left| \zeta \right| ^{2}}e^{\zeta a^{\dag }}\left( a^{\dag }+\zeta ^{*}\right) e^{\zeta ^{*}a}, \end{aligned}$$
(49)
$$\begin{aligned} e^{\zeta ^{*}a}ae^{\zeta a^{\dag }}= & {} e^{\left| \zeta \right| ^{2}}e^{\zeta a^{\dag }}e^{\zeta ^{*}a}\left( a+\zeta \right) \nonumber \\= & {} e^{\left| \zeta \right| ^{2}}e^{\zeta a^{\dag }}\left( a+\zeta \right) e^{\zeta ^{*}a}, \end{aligned}$$
(50)
$$\begin{aligned} e^{\zeta ^{*}a}a^{\dag }ae^{\zeta a^{\dag }}= & {} e^{\zeta a^{\dag }}\left( a^{\dag }+\zeta ^{*}\right) \left( a+\zeta \right) e^{\zeta ^{*}a}e^{\left| \zeta \right| ^{2}}. \end{aligned}$$
(51)

Now inserting (49), (50) and (51) into (48) we have

$$\begin{aligned}&\widetilde{\Delta E}\left( \beta ,t\right) \nonumber \\&\quad =\exp \left( \Gamma ^{*}+\Gamma +\xi ^{*}\beta ^{*}+\xi \beta +\left| \zeta \right| ^{2}\right) \nonumber \\&\qquad \hbar \omega _{0} e^{\zeta \beta ^{*}e^{i\omega _{0} t}}e^{\zeta ^{*}\beta e^{-i\omega _{0} t}}\nonumber \\&\qquad \left[ \left( \beta ^{*}e^{i\omega _{0} t}+\zeta ^{*}\right) \left( \beta e^{-i\omega _{0} t}+\zeta \right) +\frac{1}{2}\right] \nonumber \\&\qquad +\exp \left( \Gamma ^{*}+\Gamma +\xi ^{*}\beta ^{*}+\xi \beta +\left| \zeta \right| ^{2}\right) \nonumber \\&\qquad \sqrt{\hbar }\alpha e^{\zeta \beta ^{*}e^{i\omega _{0} t}}\left[ \left( \beta ^{*}e^{i\omega _{0} t}+\zeta ^{*}\right) \right. \nonumber \\&\qquad \left. +\left( \beta e^{-i\omega _{0} t}+\zeta \right) \right] e^{\zeta ^{*}\beta e^{-i\omega _{0} t}} \nonumber \\&\qquad -\hbar \omega _{0} \left( \beta ^{*}\beta +\frac{1}{2}\right) . \end{aligned}$$
(52)

As we observe before, we have that \(\xi ^{*}+\zeta e^{i\omega _{0} t}=0\), then

$$\begin{aligned} \xi ^{*}\beta ^{*}+\zeta \beta ^{*}e^{i\omega _{0} t}=0 \end{aligned}$$
(53)

In a similar way we have \(\xi +\zeta ^{*}e^{-i\omega _{0} t}=0\), thus

$$\begin{aligned} \xi \beta +\zeta ^{*}\beta e^{-i\omega _{0} t}=0. \end{aligned}$$
(54)

We have that , \(\Gamma ^{*}+\Gamma +\left| \zeta \right| ^{2}=0\), then, after some algebra, we find

$$\begin{aligned} \widetilde{\Delta E}\left( t\right)= & {} \hbar \omega _{0} \left( a^{\dag }\zeta e^{i\omega _{0} t}+a\zeta ^{*}e^{-i\omega _{0} t}+\left| \zeta \right| ^{2}\right) \nonumber \\&+\sqrt{\hbar }\alpha \left( a^{\dag }e^{i\omega _{0} t}+ae^{-i\omega _{0} t}+\zeta ^{*}+\zeta \right) \end{aligned}$$
(55)

Using the result (37) we obtain

$$\begin{aligned} \widetilde{\Delta E}= & {} \frac{lv}{\omega _{0} }x\sin \left( \omega _{0} t\right) -\frac{lv }{\omega _{0} ^{2}}p\cos \left( \omega _{0} t\right) \nonumber \\&-\frac{lv}{\omega _{0} ^{2}}p+\frac{ l^{2}v^{2}}{\omega _{0} ^{4}}\left( 1-\cos \left( \omega _{0} t\right) \right) -\frac{ l^{2}v^{2}t^{2}}{2\omega _{0} ^{2}} \end{aligned}$$
(56)

Now we can verify the quantum analog for Jarzynski’s equality, the mean of the work operator is

$$\begin{aligned}&\left\langle \exp \left( -\beta \widetilde{\Delta E}\right) \right\rangle \nonumber \\&=Tr\left\{ \begin{array}{c} {\hat{\rho }}_{0}\exp \left[ -\frac{\beta lv}{\omega _{0} }{\hat{x}}\sin \left( \omega _{0} t\right) +\frac{\beta lv}{\omega _{0} ^{2}}{\hat{p}}\cos \left( \omega _{0} t\right) +\frac{\beta lv}{\omega _{0} ^{2}}{\hat{p}}\right] \\ \times \exp \left[ -\frac{\beta l^{2}v^{2}}{\omega _{0} ^{4}}\left( 1-\cos \left( \omega _{0} t\right) \right) +\frac{\beta l^{2}v^{2}t^{2}}{2\omega _{0} ^{2}}\right] \end{array} \right\} \nonumber \\ \end{aligned}$$
(57)

and we have

$$\begin{aligned} \rho _{0}(x,x^{\prime })= & {} \sqrt{\frac{\omega _{0} }{\pi }\tanh \left( \frac{\beta \omega _{0} }{2}\right) }\nonumber \\&\exp \left[ -\frac{\omega _{0} }{4}\left( \left( x+x^{\prime }\right) ^{2}\tanh \left( \frac{\beta \omega _{0} }{2}\right) \right. \right. \nonumber \\&\left. \left. +\left( x-x^{\prime }\right) ^{2}\coth \left( \frac{\beta \omega _{0} }{2}\right) \right) \right] . \end{aligned}$$
(58)

Then after some algebraic manipulations we have

$$\begin{aligned} \left\langle \exp \left( -\beta \widetilde{\Delta E}\right) \right\rangle= & {} \exp \left\{ \frac{\beta ^{2}l^{2}v^{2}\left[ 1-\cos \left( \omega _{0} t\right) \right] }{2\omega _{0} ^{3}\tanh \left( \frac{\beta \omega _{0} }{2}\right) }+\frac{ \beta l^{2}v^{2}t^{2}}{2\omega _{0} ^{2}}\right. \nonumber \\&\left. -\frac{\beta l^{2}v^{2}}{\omega _{0} ^{4}} \left[ 1-\cos \left( \omega _{0} t\right) \right] \right\} . \end{aligned}$$
(59)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, J.O.R., de Faria, J.G.P., de Oliveira, J.G.G. et al. The quantum Jarzynski inequality for superconducting optical cavities. Eur. Phys. J. D 75, 30 (2021). https://doi.org/10.1140/epjd/s10053-020-00028-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00028-w

Navigation