Skip to main content
Log in

Static multipole polarizabilites of H-atom in modified ring-shaped potentials

  • Regular Article - Topical Issue
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The time-independent Schrödinger equation (TISE) is solved to evaluate energy eigenvalues and eigenfunctions of H-atom confined by one of the radial potentials, which is modified by a ring-shaped potential and further encaged in a spherical boundary. We have considered the following four radial potentials i.e., Debye, Exponential Cosine Screened Coulomb (ECSC), Hulthén(\(\alpha \)), and Hulthén(2\(\alpha \)). Static \(2^{l}\)-pole polarizability of H-atom in different modified ring confinement potential is evaluated for a range of screening parameter (\(\alpha \)). Repulsive ring-shaped potential affects multipole polarizabilities and reduces the critical screening parameter in different modified ring confinement potentials. The confinement parameters \(\alpha \) and \(\beta \) considerably affect the amplitude of multipole polarizabilities. Size of the spherical boundary (\(r_{0}\)) crucially affects multipole polarizabilities and overweighs the effect of \(\alpha \) and \(\beta \). The results prove that as the screening parameter increases the polarizabilities corresponding to various radial potentials become almost equal, i.e., the response due to the different radial potentials becomes indistinguishable after a particular value of the screening parameter.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. A. Arda, Adv. High Energy Phys. 2017, 1 (2017). https://doi.org/10.1155/2017/6340409

    Article  Google Scholar 

  2. J. Mitroy, M.S. Safronova, C.W. Clark, J. Phys. B: Atomic, Molecular and Optical Phys. 43, (2010). https://doi.org/10.1088/0953-4075/43/20/202001

  3. J. Tiihonen, I. Kylänpää, T.T. Rantala, J. Chem. Phys. 147, 204101 (2017). https://doi.org/10.1063/1.4999840

    Article  ADS  Google Scholar 

  4. A. Michels, J. De Boer, A. Bijl, Physica 4, 981 (1937)

    Article  ADS  Google Scholar 

  5. A. Dalgarno, Adv. Phys. 11, 281 (1962). https://doi.org/10.1080/00018736200101302

    Article  ADS  Google Scholar 

  6. P.W. Langhoff, R.P. Hurst, Phys. Rev. 139, 1415 (1965). https://doi.org/10.1103/PhysRev.139.A1415

    Article  ADS  MathSciNet  Google Scholar 

  7. A.C. Tanner, A.J. Thakkar, Int. J. Quantum Chem. 24, 345 (1983). https://doi.org/10.1002/qua.560240403

    Article  Google Scholar 

  8. B. Saha, P.K. Mukherjee, G.H.F. Diercksen, Astron. Astrophys. 396, 337 (2002). https://doi.org/10.1051/0004-6361:20021350

    Article  ADS  Google Scholar 

  9. K.D. Sen, B. Mayer, P.C. Schmidt, J. Garza, R. Vargas, A. Vela, Int. J. Quantum Chem. 90, 491 (2002). https://doi.org/10.1002/qua.946

    Article  Google Scholar 

  10. C. Laughlin, J. Phys. B: Atomic, Molecular and Optical Phys. 37, 4085 (2004). https://doi.org/10.1088/0953-4075/37/20/004

    Article  Google Scholar 

  11. Y.Y. Qi, J.G. Wang, R.K. Janev, Phys. Rev. A 80, 032502 (2009)

  12. M. Das, Phys. Plasmas 19, 092707 (2012). https://doi.org/10.1063/1.4754716

    Article  ADS  Google Scholar 

  13. H.F. Lai, Y.C. Lin, C.Y. Lin, Y.K. Ho, Chinese J. Phys. 51, 73 (2013). https://doi.org/10.6122/CJP.51.73

  14. M.K. Bahar, A. Soylu, A. Poszwa, IEEE Trans. Plasma Sci. 44, 2297 (2016). https://doi.org/10.1109/TPS.2016.2604421

    Article  ADS  Google Scholar 

  15. L. Zhu, Y.Y. He, L.G. Jiao, Y.C. Wang, Y.K. Ho, Phys. Plasmas 27, 072101 (2020). https://doi.org/10.1063/5.0007973

    Article  ADS  Google Scholar 

  16. C.Y. Chen, S.H. Dong, Phys. Lett. A 335, 374 (2005). https://doi.org/10.1016/j.physleta.2004.12.062

    Article  ADS  MathSciNet  Google Scholar 

  17. S.M. Ikhdair, R. Sever, Int. J. Theor. Phys. 46, 2384 (2007). https://doi.org/10.1007/s10773-007-9356-8

    Article  Google Scholar 

  18. Y.F. Cheng, T.Q. Dai, Phys. Scripta 75, 274 (2007). https://doi.org/10.1088/0031-8949/75/3/008

    Article  MathSciNet  Google Scholar 

  19. D. Agboola, Commun. Theor. Phys. 55, 972 (2011)

    Article  ADS  Google Scholar 

  20. J.B. Rosser, Comput. Math. Appl. 1, 351 (1975)

    Article  Google Scholar 

  21. T.E. Simos, P.S. Williams, Comput. Chem. 23, 513 (1999)

    Article  Google Scholar 

  22. S.L. Talwar, S. Lumb, K.D. Sen, V. Prasad, Phys. Scripta 95, 035404 (2020)

    Article  Google Scholar 

  23. S. Lumb, S. Lumb, V. Prasad, European Physical Journal Plus 130, (2015). https://doi.org/10.1140/epjp/i2015-15149-6

  24. K.D. Sen, J. Katriel, H.E. Montgomery, Ann. Phys. 397, 192 (2018). https://doi.org/10.1016/j.aop.2018.08.001

    Article  ADS  Google Scholar 

  25. K.D. Sen, D. Mandal, J. Molecular Model. 24, 299 (2018). https://doi.org/10.1007/s00894-018-3840-3

    Article  Google Scholar 

  26. R.L. Hall, J. Phys. A: Math. General 25, 4459 (1992). https://doi.org/10.1088/0305-4470/25/16/021

    Article  ADS  Google Scholar 

  27. J.G. Kirkwood, Physik, Z 57, 33 (1932)

  28. R.A. Buckingham, Proc. Royal Soc. London A 94, 160 (1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Chanchal Yadav made the computer code for the problem, generated the data and carried out critical analysis of the manuscript. Sonia Lumb did interpretation of the data, drafted the manuscript and approved for the submitted version. Vinod Prasad formulated the problem and contributed in the interpretation of the data and approved for version of the manuscript to be submitted.

Corresponding author

Correspondence to Vinod Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, C., Lumb, S. & Prasad, V. Static multipole polarizabilites of H-atom in modified ring-shaped potentials. Eur. Phys. J. D 75, 21 (2021). https://doi.org/10.1140/epjd/s10053-020-00026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00026-y

Navigation