Skip to main content
Log in

The Role of Coding and Regulatory RNAs during Acute Stress

  • REVIEW
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

In the modern world, various forms of stressful conditions are an important problem for human health. The prolonged stress experienced by residents of large cities can lead to a decrease in cognitive functions and cause the development of anxiety disorders, depressive states, and more serious diseases. Studying the effect of stress and its consequences on the human body, as well as the development of antistress drugs, is an important task for modern science. The changes in the functioning of genes are the molecular genetic factors of stress manifestations; however, the mechanisms by which stress affects the functioning of genes are not fully understood. Analysis of the transcriptome underlies the study of gene functioning and is one of the most effective approaches to studying the mechanisms that determine the development of stress conditions and ways to achieve antistress effects of drugs. It has now been established that, in response to pathological effects, not only information RNAs (mRNAs) are involved, but also various types of noncoding RNAs, in particular, microRNAs and long noncoding RNAs (lncRNAs). Recently, the idea that lncRNAs can interact with microRNAs and inhibit their activity is actively being developed. Such functions are attributed to a new and actively studied type of RNA of circular nature (circRNAs). Recently, it has become apparent that the analysis of “noncoding RNA–mRNA” regulatory interactions is an important component part of the detailed study of the mechanisms of pathogenesis and stress-induced disorders. This review presents the latest data on the role of mRNAs and noncoding RNAs in acute stress, as well as under the action of antistress drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rüedi-Bettschen, D., Zhang, W., Russig, H., Ferger, B., Weston, A., Pedersen, E.M., et al., Early deprivation leads to altered behavioral, autonomic and endocrine responses to environmental challenge in adult Fischer rats, Eur. J. Neurosci., 2006, vol. 24, no. 10, pp. 2879–2893. https://doi.org/10.1111/j.1460-9568.2006.05158.x

    Article  PubMed  Google Scholar 

  2. Hasler, G., Drevets, W.C., Manji, H.K., and Charney, D.S., Discovering endophenotypes for major depression, Neuropsychopharmacology, 2004, vol. 29, no. 10, pp. 1765–1781. https://doi.org/10.1038/sj.npp.1300506

    Article  CAS  PubMed  Google Scholar 

  3. Jauregui-Huerta, F., Zhang, L., Yañez-Delgadillo, G., Hernandez-Carrillo, P., García-Estrada, J., and Luquín, S., Hippocampal cytogenesis and spatial learning in senile rats exposed to chronic variable stress: effects of previous early life exposure to mild stress, Front. Aging Neurosci., 2015, vol. 7, p. 159. https://doi.org/10.3389/fnagi.2015.00159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shea, C.J., Carhuatanta, K.A., Wagner, J., Bechmann, N., Moore, R., Herman, J.P., et al., Variable impact of chronic stress on spatial learning and memory in BXD mice, Physiol. Behav., 2015, vol. 150, pp. 69–77. https://doi.org/10.1016/j.physbeh.2015.06.022

    Article  CAS  PubMed  Google Scholar 

  5. Schwabe, L., Memory under stress: From single systems to network changes, Eur. J. Neurosci., 2017, vol. 45, no. 4, pp. 478–489. https://doi.org/10.1111/ejn.13478

    Article  PubMed  Google Scholar 

  6. Bogdanov, M. and Schwabe, L., Transcranial stimulation of the dorsolateral prefrontal cortex prevents stress-induced working memory deficits, J. Neurosci., 2016, vol. 36, no. 4, pp. 1429–1437. https://doi.org/10.1523/JNEUROSCI.3687-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cazakoff, B.N., Johnson, K.J., and Howland, J.G., Converging effects of acute stress on spatial and recognition memory in rodents: A review of recent behavioural and pharmacological findings, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2010, vol. 34, no. 5, pp. 733–741. https://doi.org/10.1016/j.pnpbp.2010.04.002

    Article  Google Scholar 

  8. Li, S., Fan, Y.-X., Wang, W., and Tang, Y.-Y., Effects of acute restraint stress on different components of memory as assessed by object-recognition and object-location tasks in mice, Behav. Brain Res., 2012, vol. 227, no. 1, pp. 199–207. https://doi.org/10.1016/j.bbr.2011.10.007

    Article  PubMed  Google Scholar 

  9. Vargas-López, V., Lamprea, M.R., and Múnera, A., Histone deacetylase inhibition abolishes stress-induced spatial memory impairment, Neurobiol. Learn. Mem., 2016, vol. 134, part B, pp. 328–338. https://doi.org/10.1016/j.nlm.2016.08.009

  10. Abrahám, I.M. and Kovács, K.J., Postnatal handling alters the activation of stress-related neuronal circuitries, Eur. J. Neurosci., 2000, vol. 12, no. 8, pp. 3003–3014.

    Article  PubMed  Google Scholar 

  11. Amin, S.N., Gamal, S.M., Esmail, R.S.E.N., Aziz, T.M.A., and Rashed, L.A., Cognitive effects of acute restraint stress in male albino rats and the impact of pretreatment with quetiapine versus ghrelin, J. Integr. Neurosci., 2014, vol. 13, no. 4, pp. 669–692. https://doi.org/10.1142/S0219635214500253

    Article  PubMed  Google Scholar 

  12. Haider, S., Naqvi, F., Batool, Z., Tabassum, S., Sadir, S., Liaquat, L., et al., Pretreatment with curcumin attenuates anxiety while strengthens memory performance after one short stress experience in male rats, Brain Res. Bull., 2015, vol. 115, pp. 1–8. https://doi.org/10.1016/j.brainresbull.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  13. Glazova, N.Yu., Sebentsova, E.A., Manchenko, D.M., Andreeva, L.A., Dergunova, L.V., Levitskaya, N.G., et al., The protective effect of Semax in a model of stress-induced impairment of memory and behavior in white rats, Biol. Bull. (Moscow), 2018, vol. 45, no. 4, pp. 394–399. https://doi.org/10.1134/S1062359018040040

    Article  Google Scholar 

  14. Ma, K., Guo, L., Xu, A., Cui, S., and Wang, J.-H., Molecular mechanism for stress-induced depression assessed by sequencing miRNA and mRNA in medial prefrontal cortex, PLoS One, 2016, vol. 11, no. 7, p. e0159093. https://doi.org/10.1371/journal.pone.0159093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Opmeer, E.M., Kortekaas, R., and Aleman, A., Depression and the role of genes involved in dopamine metabolism and signalling, Prog. Neurobiol., 2010, vol. 92, no. 2, pp. 112–133. https://doi.org/10.1016/j.pneurobio.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  16. Whitton, A.E., Treadway, M.T., and Pizzagalli, D.A., Reward processing dysfunction in major depression, bipolar disorder and schizophrenia, Curr. Opin. Psychiatry, 2015, vol. 28, no. 1, pp. 7–12. https://doi.org/10.1097/YCO.0000000000000122

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou, M., Wang, M., Wang, X., Liu, K., Wan, Y., Li, M., et al., Abnormal expression of microRNAs induced by chronic unpredictable mild stress in rat hippocampal tissues, Mol. Neurobiol., 2018, vol. 55, no. 2, pp. 917–935. https://doi.org/10.1007/s12035-016-0365-6

    Article  CAS  PubMed  Google Scholar 

  18. Hendrickson, D.G., Hogan, D.J., McCullough, H.L., Myers, J.W., Herschlag, D., Ferrell, J.E., et al., Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA, PLoS Biol., 2009, vol. 7, no. 11, p. e1000238. https://doi.org/10.1371/journal.pbio.1000238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilczynska, A. and Bushell, M., The complexity of miRNA-mediated repression, Cell Death Differ., 2015, vol. 22, no. 1, pp. 22–33. https://doi.org/10.1038/cdd.2014.112

    Article  CAS  PubMed  Google Scholar 

  20. Liu, B.-B., Luo, L., Liu, X.-L., Geng, D., Liu, Q., and Yi, L.-T., 7-Chlorokynurenic acid (7-CTKA) produces rapid antidepressant-like effects: Through regulating hippocampal microRNA expressions involved in TrkB-ERK/Akt signaling pathways in mice exposed to chronic unpredictable mild stress, Psychopharmacology (Berlin, Ger.), 2015, vol. 232, no. 3, pp 541–550. https://doi.org/10.1007/s00213-014-3690-3

  21. Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S.M., Ala, U., et al., Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs, Cell, 2011, vol. 147, no. 2, pp. 344–357. https://doi.org/10.1016/j.cell.2011.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Broderick, J.A. and Zamore, P.D., Competitive endogenous RNAs cannot alter microRNA function in vivo, Mol. Cell, 2014, vol. 54, no. 5, pp. 711–713. https://doi.org/10.1016/j.molcel.2014.05.023

    Article  CAS  PubMed  Google Scholar 

  23. Denzler, R., Agarwal, V., Stefano, J., Bartel, D.P., and Stoffel, M., Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance, Mol. Cell, 2014, vol. 54, no. 5, pp. 766–776. https://doi.org/10.1016/j.molcel.2014.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salzman, J., Gawad, C., Wang, P.L., Lacayo, N., and Brown, P.O., Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types, PLoS One, 2012, vol. 7, no. 2, p. e30733. https://doi.org/10.1371/journal.pone.0030733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeck, W.R., Sorrentino, J.A., Wang, K., Slevin, M.K., Burd, C.E., Liu, J., et al., Circular RNAs are abundant, conserved, and associated with ALU repeats, RNA, 2013, vol. 19, no. 2, pp. 141–157. https://doi.org/10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y., Zhang, X.O., Chen, T., Xiang, J.F., Yin, Q.F., Xing, Y.H., et al., Circular intronic long noncoding RNAs, Mol. Cell, 2013, vol. 51, no. 6, pp. 792–806. https://doi.org/10.1016/j.molcel.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  27. Lasda, E. and Parker, R., Circular RNAs: Diversity of form and function, RNA, 2014, vol. 20, no. 12, pp. 1829–1842. https://doi.org/10.1261/rna.047126.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Filippenkov, I.B., Kalinichenko, E.O., Limborska, S.A., and Dergunova, L.V., Circular RNAs—one of the enigmas of the brain, Neurogenetics, 2017, vol. 18, no. 1, pp. 1–6. https://doi.org/10.1007/s10048-016-0490-4

    Article  CAS  PubMed  Google Scholar 

  29. Filippenkov, I.B., Sudarkina, O.Yu., Limborska, S.A., and Dergunova, L.V., Circular RNA of the human sphingomyelin synthase 1 gene: Multiple splice variants, evolutionary conservatism and expression in different tissues, RNA Biol., 2015, vol. 12, no. 9, pp. 1030–1042. https://doi.org/10.1080/15476286.2015.1076611

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., et al., Natural RNA circles function as efficient microRNA sponges, Nature, 2013, vol. 495, no. 7441, pp. 384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  31. Lukiw, W.J., Circular RNA (circRNA) in Alzheimer’s disease (AD), Front. Genet., 2013, vol. 4, p. 307. https://doi.org/10.3389/fgene.2013.00307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Piwecka, M., Glažar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., et al., Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function, Science, 2017, vol. 357, no. 6357, p. eaam8526. https://doi.org/10.1126/science.aam8526

  33. Zhang, H., Chen, Z., Zhong, Z., Gong, W., and Li, J., Total saponins from the leaves of Panax notoginseng inhibit depression on mouse chronic unpredictable mild stress model by regulating circRNA expression, Brain Behav., 2018, vol. 8, no. 11, p. e01127. https://doi.org/10.1002/brb3.1127

    Article  PubMed  PubMed Central  Google Scholar 

  34. An, T., Zhang, J., Ma, Y., Lian, J., Wu, Y.X., Lv, B.H., et al., Relationships of non-coding RNA with diabetes and depression, Sci. Rep., 2019, vol. 9, no. 1, p. 10707. https://doi.org/10.1038/s41598-019-47077-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ashmarin, I.P., Samonina, G.E., Lyapina, L.A., Kamenskii, A.A., Levitskaya, N.G., Grivennikov, I.A., et al., Natural and hybrid chimeric stable regulatory glyproline peptides, Pathophysiology, 2005, vol. 11, no. 4, pp. 179–185. https://doi.org/10.1016/j.pathophys.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  36. Kolomin, T.A., Agapova, T.Yu., Agniullin, Ya.V., Shram, S.I., Shadrina, M.I., Slominskii, P.A., et al., Transcriptome alteration in hippocampus under the treatment of tuftsin analog Selank, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2013, vol. 63, no. 3, pp. 365–374. https://doi.org/10.7868/s0044467713030052

    Article  CAS  Google Scholar 

  37. Volkova, A., Shadrina, M., Kolomin, T., Andreeva, L., Limborska, S., Myasoedov, N., et al., Selank administration affects the expression of some genes involved in GABAergic neurotransmission, Front. Pharmacol., 2016, vol. 7, p. 31. https://doi.org/10.3389/fphar.2016.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. An, T., He, Z.C., Zhang, X.Q., Li, J., Chen, A.L., Tan, F., et al., Baduanjin exerts anti-diabetic and anti-depression effects by regulating the expression of mRNA, lncRNA, and circRNA, Chin. Med., 2019, vol. 14, p. 3. https://doi.org/10.1186/s13020-019-0225-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-14-00268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Filippenkov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Kazantseva

ADDITIONAL INFORMATION

Filippenkov I.B., https://orcid.org/0000-0002-6964-3405; e-mail: filippenkov@img.ras.ru.

Dergunova L.V., https://orcid.org/0000-0003-2789-2419; e-mail: lvdergunova@mail.ru.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippenkov, I.B., Dergunova, L.V. The Role of Coding and Regulatory RNAs during Acute Stress. Mol. Genet. Microbiol. Virol. 35, 129–133 (2020). https://doi.org/10.3103/S0891416820030027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416820030027

Keywords:

Navigation