Skip to main content
Log in

Effect of Sr2+ Ion–Substituted Nickel Ferrite Nanoparticles Prepared by a Simple Microwave Combustion Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Microwave combustion technique (MCT) was used to synthesize of spinel Ni1-xSrxFe2O4 (x = 0.0, 0.1, 0.3 and 0.5) nanoparticles (NPs) by employing the fuel L-arginine. The physical characteristics of the as-prepared NPs were obtained by following methods, viz., powder X-ray diffraction (XRD), high-resolution scanning electron microscope (HR-SEM), energy-dispersive X-ray (EDX), UV-visible diffuse reflectance spectra (UV-Vis DRS), Fourier-transform infrared spectra (FT-IR), and vibrating sample magnetometer (VSM) techniques. The diffraction studies revealed that the average crystallite size exists in the band of 14.25 to 27.52 nm. The HR-SEM pictures revealed the agglomerated and spherical morphology of spinel Ni1-xSrxFe2O4 (x = 0 to 0.5) nanoparticles. Elemental analysis ensured the existence of Ni, Sr, O, and Fe ions. The energy band gap of the NPs was observed to exist in the range of 2.95 to 3.39 eV upon varying the concentration of Sr2+ dopant. The broad peaks at 437 cm−1 and 582 cm−1 correspond to octahedral (B-) metal stretching (Ni-O) and tetrahedral (A-) metal stretching (Fe-O) of nickel ferrite respectively. Magnetic results revealed that the prepared NPs are ferromagnetic in nature. The antibacterial activity (ABA) of gram-positive Staphylococcus aureus and Bacillus subtilis and gram-negative Escherichia coli and Klebsiella pneumonia has been investigated using pure and Sr2+-substituted NiFe2O4 NPs. It was found that the improved activity is intensified with smooth Sr2+ doping as it causes a decrease in the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yin, H., Too, H.P., Chow, G.M.: The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials. 26(29), 5818–5826 (2005)

    Article  Google Scholar 

  2. Hasmonay, E., Depeyrot, J., Sousa, M.H., Tourinho, F.A., Bacri, J.C., Perzynski, R.: Optical properties of nickel ferrite ferrofluids. J. Mag. Magn. Mater. 201(1–3), 195–199 (1999)

    Article  ADS  Google Scholar 

  3. Kale, A., Gubbala, S., Misra, R.D.K.: Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique. J. Mag. Magn. Mater. 277(3), 350–358 (2004)

    Article  ADS  Google Scholar 

  4. Liang, Z., Guang, J., Feng, Z., Zheng, G.Z.: First-principles study of the structural, mechanical and electronic properties of ZnX2O4 (X= Al, Cr and Ga). Chin. Phys. B. 20, 047102–047107 (2011)

    Article  ADS  Google Scholar 

  5. K.E. Sickafus, J.M. Wills, N.W. Grimes, structure of spinel, J. Am. Ceram.Soc., 82 (1999) 3279–3292

  6. Nakatsuka, A., Ikeda, Y., Yamasaki, Y., Nakayama, N., Mizota, T.: Cation distribution and bond lengths in CoAl2O4 spinels. Solid State Commun. 128, 85–90 (2003)

    Article  ADS  Google Scholar 

  7. D.S. Mathew, R.S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chem. Eng. J. 129 (2007)51–65

  8. M. Sundararajan, L.J. Kennedy, U. Aruldoss, Sk. Khadeer Pasha, J.J. Vijaya, S. Dunn, Microwave combustion synthesis of zinc substituted nanocrystalline spinel cobalt ferrite: Structural and magnetic studies, Mater. Sci. Semicond. Proces., 40(2015)1–10

  9. Eerenstein, W., Mathur, N.D., Scoot, J.F.: Multiferroic and magnetoelectric materials. Nature. 442, 759–765 (2006)

    Article  ADS  Google Scholar 

  10. M. Srivastava, S. Chaubey, Animesh K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods, Mater. Chem. Phy. 118 (2009) 174–180

  11. S. Mirzaee, Y.A. Kalandaragh, P. Rahimzadeh, Modified co-precipitation process effects on the structural and magnetic properties of Mn- doped nickel ferrite nanoparticles, Solid State Scien. 99 (2020) 106052 (1–6)

  12. Kothawale, M.M., Tangsali, R.B., Naik, G.K., Budkuley, J.S.: Characterization and magnetic properties of nanoparticle Ni1−x ZnxFe2O4 ferrites prepared using microwave assisted combustion method. J. Supercond. Nov. Magn. 25, 1907–1911 (2012)

    Article  Google Scholar 

  13. P. Jain, S. Srivastava, R.S. Rana, N. Gupta, Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol-gel method, 2, (4-5) (2015) 3750–3757

  14. Nabiyouni, G., Fesharaki, M.J., Mozafari, M., Amighian, J.: Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique. Chin. Phy. Letters. 27, 12 (2010)

    Google Scholar 

  15. Karaagac, O., Köçkar, H.: The effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method. J. Mater. Sci. Mater. Electron. 31, 2567–2574 (2020)

    Article  Google Scholar 

  16. Hasirci, C., Karaagac, O., Köçkar, H.: Superparamagnetic zinc ferrite: a correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process. J. Magne. Magn. Mater. 474, 282–286 (2019)

    Article  ADS  Google Scholar 

  17. Karaagac, O., Atmaca, S., Kockar, H.: A facile method to synthesize nickel ferrite nanoparticles: parameter effect. J. Supercond. Nov. Magn. 30, 2359–2369 (2017)

    Article  Google Scholar 

  18. Koseoglu, Y., Kurtulus, F., Kockar, H., Guler, H., Karaagac, O., Kazan, S., Aktas, B.: Magnetic characterizations of cobalt oxide nanoparticles. J. Supercond. Nov. Magn. 25, 2783–2787 (2012)

    Article  Google Scholar 

  19. Karaagac, O., Bilir Yildiz, B., Köçkar, H.: The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization. J. Magn. Magn. Mater. 473, 262–267 (2019)

    Article  ADS  Google Scholar 

  20. Karaagac, O., Bilir, B., Kockar, H.: Superparamagnetic cobalt ferrite nanoparticles: effect of temperature and base concentration. J. Supercond. Nov. Magn. 28, 1021–1027 (2015)

    Article  Google Scholar 

  21. Sun, Y.K., Oh, I.H., Hong, S.A.: Synthesis of ultrafine LiCoO2 powders by the sol-gel method. J. Mater. Sci. 31, 3617–3621 (1996)

    Article  ADS  Google Scholar 

  22. Alarifi, A., Deraz, N.M., Shaban, S.: Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J. Alloys Compd. 486, 501–506 (2009)

    Article  Google Scholar 

  23. Ramalho, M.A.F., Gama, L., Antonio, S.G., Paiva-Santos, C.O., Miola, E.J., Kiminami, R.H.G.A., Costa, A.C.F.M.: X-ray diffraction and mossbauer spectra of nickel ferrite prepared by combustion reaction. J. Mater. Sci. 42, 3603–3606 (2007)

    Article  ADS  Google Scholar 

  24. Raghavender, A.T., Zadro, K., Pajic, D., Skoko, Z., Billiskov, N.: Effect of grain size on the Néel temperature of nanocrystalline nickel ferrite. Mater. Lett. 64, 1144–1146 (2010)

    Article  Google Scholar 

  25. S.K. Gore, S.S. Jadhav, U.B. Tumberphale, S.M. Shaikh, M. Naushad, R.S. Mane, Cation distribution, magnetic properties and cubic-perovskite phase transition in bismuth-doped nickel ferrite, https://doi.org/10.1016/j.solidstatesciences.2017.10.0091293-2558/c2017

  26. Bhaskera, S.U., Veeraswamy, Y., Jayababu, N., Ramanareddy, M.V.: Chromium substitution effect on the structural, optical, electrical and magnetic properties of nickel ferrite nano particles; synthesized by an environmentally benign auto combustion method. Mater. Today: Proceedings. 3, 3666–3672 (2016)

    Google Scholar 

  27. Kumar, K., Loganathan, A.: Structural, electrical and magnetic properties of large ionic size Sr2+ ions substituted Mg-ferrite nanoparticles. Mater. Chem. Phys. 214, 229–238 (2018)

    Article  Google Scholar 

  28. Mahmoodi, N.M.: Zinc ferrite nanoparticle as a magnetic catalyst: synthesis and dye degradation. Res. Bull. 48, 4255–4260 (2013)

    Article  Google Scholar 

  29. C. Himcinschi, I. Vrejoiu, G. Salvan, M. Fronk, A.T. Berger, D.R.T. Zahn, D. Rafaja, and J. Kortus, Optical and magneto-optical study of nickel and cobalt ferrite epitaxial thin films and submicron structures, J. App. Phy., 113 (2013) 084101

  30. Nadumane, A., Shetty, K., Anantharaju, K.S., Nagaswarupa, H.P., Rangappa, D., Vidya, Y.S., Nagabhushana, H., Prashantha, S.C.: Sunlight photocatalytic performance of Mg-doped nickel ferrite synthesized by a green sol-gel route. J. Science: Advan. Mater. Device. 4, 89–100 (2019)

    Google Scholar 

  31. Hirthna, Sendhilnathan, S.: Enhancement in dielectric and magnetic properties of Mg2+ substituted highly porous super paramagnetic nickel ferrite nanoparticles with Williamson-Hall plots mechanistic view. Ceram. Int. 43, 15447–15453 (2017)

    Article  Google Scholar 

  32. Sundararajan, M., John Kennedy, L., Vijaya, J.J.: Synthesis and characterization of cobalt substituted zinc ferrite nanoparticles by microwave combustion method. J. Nanosci. Nanotech. 5, 1–10 (2015)

    Google Scholar 

  33. Zhang, C.Y., Shen, X.Q., Zhou, J.X., Jing, M.X., Cao, K.: Synthesis and magnetic properties of nanocomposite Ni1−xCoxFe2O4–BaTiO3 fibers by organic gel-thermal decomposition process. J. Sol-Gel Sci. Technol. 42, 95 (2007)

    Article  Google Scholar 

  34. Maensiri, S., Masingboon, C., Boonchom, B., Seraphin, S.: A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white S. Scr. Mater. 56, 797–800 (2007)

    Article  Google Scholar 

  35. Sundararajana, M., Kennedy, L.J., Nithya, P., Vijaya, J.J., Bououdina, M.: Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method. J. Phy. Chem. Solids. 108, 61–75 (2017)

    Article  ADS  Google Scholar 

  36. Costa, A.C.F.M., Silva, V.J., Cornejo, D.R., Morelli, M.R., Kiminami, R.H.G.A., Gama, L.: Magnetic and structural properties of NiFe2O4 ferrite nanopowder doped with Zn2+. J. Magn. Magn. Mater. 320, 370–372 (2008)

    Article  ADS  Google Scholar 

  37. Chitra, K., Reena, K., Manikandan, A., Arul Antony, S.: Antibacterial studies and effect of poloxamer on gold nanoparticles by Zingiber officinale extracted green synthesis. J. Nanosci. Nanotech. 15, 4984–4991 (2015)

    Article  Google Scholar 

  38. Bomila, R., Srinivasan, S., Gunasekaran, S., Manikandan, A.: Enhanced photocatalytic degradation of methylene blue dye, opto-magnetic and antibacterial behaviour of pure and La-doped ZnO nanoparticles. J. Supercond. Nov. Magn. 31, 855–864 (2018)

    Article  Google Scholar 

  39. Chitra, K., Manikandan, A., Arul Antony, S.: Effect of poloxamer on Zingiber officinale extracted green synthesis and antibacterial studies of silver nanoparticles. J. Nanosci. Nanotech. 16, 758–764 (2016)

    Article  Google Scholar 

  40. Manikandan, A., Manikandan, E., Meenatchi, B., Vadivel, S., Jaganathan, S.K.: Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. J. Alloys Compd. 723, 1155–1161 (2017)

    Article  Google Scholar 

  41. Chitra, K., Manikandan, A., Moortheswaran, S., Reena, K., Arul Antony, S.: Zingiber officinale extracted green synthesis of copper nanoparticles: structural, morphological and antibacterial studies. Adv. Sci. Eng. Med. 7, 710–716 (2015)

    Article  Google Scholar 

  42. Elayakumar, K., Dinesh, A., Manikandan, A., Murugesan, P., Kavitha, G., Prakash, S., Kumar, R.T., Jaganathan, S.K., Baykal, A.: Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019)

    Article  ADS  Google Scholar 

  43. Sumithra, V., Manikandan, A., Durka, M., Jaganathan, S.K., Dinesh, A., Ramalakshmi, N., Arul Antony, S.: Simple precipitation synthesis, characterization and antibacterial activity of Mn-doped ZnO nanoparticles. Adv. Sci. Eng. Med. 9, 483–488 (2017)

    Article  Google Scholar 

  44. Elayakumar, K., Manikandan, A., Dinesh, A., Thanrasu, K., Kanmani Raja, K., Thilak Kumar, R., Slimani, Y., Jaganathan, S.K., Baykal, A.: Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 478, 140–147 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Ramachandran or A. Manikandan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanitha, M., Ramachandran, G., Manikandan, A. et al. Effect of Sr2+ Ion–Substituted Nickel Ferrite Nanoparticles Prepared by a Simple Microwave Combustion Method. J Supercond Nov Magn 34, 971–980 (2021). https://doi.org/10.1007/s10948-020-05777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05777-8

Keywords

Navigation