Skip to main content
Log in

Transverse Stability of Line Soliton and Characterization of Ground State for Wave Guide Schrödinger Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the transverse stability of the line Schrödinger soliton under a full wave guide Schrödinger flow on a cylindrical domain \({\mathbb {R}}\times {\mathbb {T}}\). When the nonlinearity is of power type \(|\psi |^{p-1}\psi \) with \(p>1\), we show that there exists a critical frequency \(\omega _{p} >0\) such that the line standing wave is stable for \(0<\omega < \omega _{p}\) and unstable for \(\omega > \omega _{p}\). Furthermore, we characterize the ground state of the wave guide Schrödinger equation. More precisely, we prove that there exists \(\omega _{*} \in (0, \omega _{p}]\) such that the ground states coincide with the line standing waves for \(\omega \in (0, \omega _{*}]\) and are different from the line standing waves for \(\omega \in (\omega _{*}, \infty )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Abuse of notation \(R_\omega :={}^t(R_\omega ,0)\).

References

  1. Bahri, Y., Ibrahim, S., Kikuchi, H.: Remarks on solitary waves and Cauchy problem for a half-wave-Schrödinger equations. arXiv:1810.01385

  2. Benyi, A., Oh, T.: The Sobolev inequality on the torus revisited. Publicationes Mathematicae Debrecen 83, 359–374 (2013)

    Article  MathSciNet  Google Scholar 

  3. Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Paris 293, 489–492 (1981)

    MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Wei, J.: On least energy solutions to a semilinear elliptic equation in a strip. Discrete Contin. Dyn. Syst. 28, 1083–1099 (2010)

    Article  MathSciNet  Google Scholar 

  5. Besov, O.V., Ilín, O.V.V.P., Nikolśkii, S.M.: Integral Representations of Functions and Imbedding Theorems, vol. I. Wiley, Hoboken (1978)

    Google Scholar 

  6. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  7. Cazenave, T.: Semilinear Schrödinger Equations Courant. Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York (2003)

    Google Scholar 

  8. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  Google Scholar 

  9. Chang, S.-M., Gustafson, S., Nakanishi, K., Tsai, T.-P.: Spectra of linearized operators for NLS solitary waves. SIAM J. Math. Anal. 39, 1070–1111 (2007/08)

  10. Christ, F.M., Weinstein, M.: Dispersion of low energy to the generalized Korteweg–de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  Google Scholar 

  11. De Bouard, A., Saut, J.C.: Symmetries and decay of the generalized Kadomtsev–Petviashvili solitary waves. SIAM J. Math. Anal. 28(5), 1064–1085 (1997)

    Article  MathSciNet  Google Scholar 

  12. Deconinck, B., Pelinovsky, D.E., Carter, J.D.: Transverse instabilities of deep-water solitary waves. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 462, 2039–2061 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Georgiev, V., Ohta, M.: Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations. J. Math. Soc. Jpn. 64, 533–548 (2012)

    Article  Google Scholar 

  14. Ginibre, J., Velo, G.: Scattering theory in the energy space for a class of nonlinear wave equations. Commun. Math. Phys. 123, 535–573 (1989)

    Article  MathSciNet  Google Scholar 

  15. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  Google Scholar 

  16. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MathSciNet  Google Scholar 

  17. Koch, H., Tataru, D., Visan, M.: Dispersive equations and nonlinear waves. Oberwolfach Seminars, vol. 45 (2014)

  18. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. 1. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  19. Pelinovsky, D.E.: A mysterious threshold for transverse instability of deep-water solitons. Math. Comput. Simul. 55, 585–594 (2001)

    Article  MathSciNet  Google Scholar 

  20. Rousset, F., Tzvetkov, N.: A simple criterion of transverse linear instability for solitary waves. Math. Res. Lett. 17, 157–170 (2010)

    Article  MathSciNet  Google Scholar 

  21. Rousset, F., Tzvetkov, N.: Stability and instability of the KDV solitary wave under the KP-I flow. Commun. Math. Phys. 313, 155–173 (2012)

    Article  MathSciNet  Google Scholar 

  22. Rousset, F., Tzvetkov, N.: Transverse nonlinear instability for two-dimensional dispersive models. Ann. I. H. Poincarè-AN. 26, 477–496 (2009)

    Article  MathSciNet  Google Scholar 

  23. Rousset, F., Tzvetkov, N.: Transverse instability of the line solitary water-waves. Invent. Math. 184, 257–388 (2011)

    Article  MathSciNet  Google Scholar 

  24. Rousset, F., Tzvetkov, N.: Transverse nonlinear instability of solitary waves for some Hamiltonian PDE’s. J. Math. Pures Appl. 90, 550–590 (2008)

    Article  MathSciNet  Google Scholar 

  25. Shatah, J., Strauss, W.: Spectral condition for instability. Contemp. Math. 255, 189–198 (2000)

    Article  MathSciNet  Google Scholar 

  26. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). Princeton University Press, Princeton (1971)

    Google Scholar 

  27. Terracini, S., Tzvetkov, N., Visciglia, N.: The nonlinear Schrödinger equation ground states on product spaces. Anal. PDE 7, 73–96 (2014)

    Article  MathSciNet  Google Scholar 

  28. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  Google Scholar 

  29. Xu, H.: Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation. Math. Z. 286, 443–489 (2017)

    Article  MathSciNet  Google Scholar 

  30. Yamazaki, Y.: Transverse instability for nonlinear Schrödinger equation with a linear potential. Adv. Differ. Equ. 21, 429–462 (2016)

    MATH  Google Scholar 

  31. Yamazaki, Y.: Stability for line standing waves near the bifurcation point for nonlinear Schrödinger equations. Kodai Math. J. 38, 65–96 (2015)

    Article  MathSciNet  Google Scholar 

  32. Yamazaki, Y.: Transverse instability for a system of nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. B 19, 565–588 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their useful comments. This work was done while HK was visiting at University of Victoria. HK thanks all members of the Department of Mathematics and Statistics for their warm hospitality. YB was supported by PIMS Grant and NSERC Grant (371637-2014). SI was supported by NSERC Grant (371637-2019). HK was supported by JSPS KAKENHI Grant Number JP17K14223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slim Ibrahim.

Additional information

In the memory of Walter Craig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Density of y-Trigonometric Polynomials

In this appendix, we shall show that the set of the trigonometric polynomial on y is dense in \(C_{0}^{y}({\mathbb {T}}, L_{x}^{1}({\mathbb {R}}))\) and \(L_{x, y}^{q}({\mathbb {R}}\times {\mathbb {T}})\). We can prove this by a classical argument. However, we will give a proof here for the sake of completeness. Note that it suffices to prove the density in \(C_y^0\left( {\mathbb {T}}, L_x^1({\mathbb {R}}) \right) \) only because the density in \(L_{x, y}^{q}\left( {\mathbb {R}}\times {\mathbb {T}}\right) \) follows exactly in the same way. We start with reviewing the following definition.

Definition A.1

A family of functions \(\left\{ \varphi _{n} \in C^0({\mathbb {T}}) :n \in {\mathbb {N}}\right\} \) is an approximate identity if:

$$\begin{aligned}&\varphi _{n}(y) \ge 0 \quad \hbox {for every}\, y \in {\mathbb {T}}\end{aligned}$$
(A.1)
$$\begin{aligned}&\int _{{\mathbb {T}}} \varphi _{n}(y) d y=1 \quad \hbox {for every}\, n \in {\mathbb {N}} \end{aligned}$$
(A.2)
$$\begin{aligned}&\lim _{n \rightarrow \infty } \int _{\delta \le |y| \le \pi } \varphi _{n}(y) d y=0 \quad \hbox {for every}\, \delta >0. \end{aligned}$$
(A.3)

In (A.3) we identify \({\mathbb {T}}\) with the interval \({\mathcal {C}}=[- \pi , \pi )\).

We now provide the following approximation lemma:

Lemma A.1

Let \(f \in C_y^0\left( {\mathbb {T}}, L_x^1({\mathbb {R}}) \right) \) and \(\left\{ \varphi _{n} \in {\mathcal {C}}^0({\mathbb {T}}) :n \in {\mathbb {N}}\right\} \) be an approximate identity. Then, \(\lim _{n \rightarrow \infty }\varphi _{n} *_y f = f\) in \(C_y^0\left( {\mathbb {T}}, L_x^1({\mathbb {R}}) \right) \), where

$$\begin{aligned} \varphi _{n} *_{y} f = \int _{-\pi }^{\pi } \varphi _{n}(y - t) f(t) dt. \end{aligned}$$

Proof

From (A.1) and (A.2), we write

$$\begin{aligned}&\Vert \varphi _{n} *_y f(\cdot ,y)\Vert _{L_{x}^1({\mathbb {R}})}-\Vert f(\cdot ,y)\Vert _{L_{x}^1({\mathbb {R}})}\\&\quad \le \int _{\mathbb {R}}\int _{-\pi }^{\pi } \varphi _{n} (t) |f(x, y-t)|dt\ dx - \int _{\mathbb {R}}|f(x,y)| \ dx\\&\quad \le \int _{-\pi }^{\pi } \varphi _{n} (t) \left( \int _{\mathbb {R}}|f(x,y-t)| dx - \int _{\mathbb {R}}|f(x,y)| \ dx \right) \ dt\\&\quad \le \int _{|t|\le \delta } \varphi _{n} (t) \left( \Vert f(\cdot ,y-t)\Vert _{L_{x}^1({\mathbb {R}})} - \Vert f(\cdot ,y)\Vert _{L_{x}^1({\mathbb {R}})} \right) \ dt\\&\qquad + \int _{\pi> |t|> \delta } \varphi _{n} (t) \left( \Vert f(\cdot ,y-t)\Vert _{L_{x}^1({\mathbb {R}})} - \Vert f(\cdot ,y)\Vert _{L_{x}^1({\mathbb {R}})} \right) \ dt. \end{aligned}$$

On the other hand, since \(f \in C_y^0\left( {\mathbb {T}}, L_x^1({\mathbb {R}}) \right) \), we infer that the function \(y\mapsto \Vert f(\cdot ,y)\Vert _{L_{x}^1({\mathbb {R}})} \) is uniformly continuous. Combining this with (A.3), we deduce that for any \(\varepsilon >0\)

$$\begin{aligned} \sup _{y \in {\mathbb {T}}} \biggl |\Vert \varphi _{n} *_y f(\cdot ,y)\Vert _{L_{x}^1({\mathbb {R}})}-\Vert f(\cdot ,y)\Vert _{L_{x}^1({\mathbb {R}})}\biggl | \le \varepsilon \qquad \hbox {for sufficiently large}\, n \in {\mathbb {N}}. \end{aligned}$$

This finishes the proof of Lemma A.1. \(\square \)

As a consequence, we obtain the density property.

Lemma A.2

The set of trigonometric polynomials on y are dense in \( C_y^0\left( {\mathbb {T}}, L_x^1({\mathbb {R}}) \right) \).

Proof

For each \(n\in {\mathbb {N}}\), we define a function \(\varphi _{n}\) by

$$\begin{aligned} \varphi _n(y):=c_n\left( 1+\cos y \right) ^n, \end{aligned}$$

where

$$\begin{aligned} c_{n} = \left( \int _{-\pi }^{\pi } (1 + \cos y)^{n} dy \right) ^{-1}. \end{aligned}$$

Clearly, the sequence \(\{\varphi _{n}\}_{n \in {\mathbb {N}}}\) satisfies (A.1) and (A.2). We claim that \(\{\varphi _n\}_{{\mathbb {N}}}\) also satisfies (A.3). Putting \(t = \tan \frac{y}{2}\). Then, we have

$$\begin{aligned} \int _{\delta }^{\pi } (1 + \cos y)^{n} dy \!=\! \int _{\tan \frac{\delta }{2}}^{\infty } \left( \frac{2}{1 + t^{2}} \right) ^{n+1} dt, \!\!\!\!\qquad \!\!\!\int _{0}^{\pi } (1 + \cos y)^{n} dy = \int _{0}^{\infty } \left( \frac{2}{1 + t^{2}} \right) ^{n+1} dt. \end{aligned}$$

We can easily verify that

$$\begin{aligned}&\int _{\tan \frac{\delta }{2}}^{\infty } \left( \frac{2}{1 + t^{2}} \right) ^{n+1} dt \le \left( \frac{2}{1 + (\tan \frac{\delta }{2})^{2}} \right) ^{n} \int _{0}^{\infty } \frac{2}{1 + t^{2}} dt = \left( \frac{2}{1 + (\tan \frac{\delta }{2})^{2}} \right) ^{n} \pi , \end{aligned}$$
(A.4)
$$\begin{aligned}&\int _{0}^{\infty } \left( \frac{2}{1 + t^{2}} \right) ^{n+1} dt \ge \int _{0}^{\frac{\delta }{4}} \left( \frac{2}{1 + t^{2}} \right) ^{n+1} dt \ge \left( \frac{2}{1 + \frac{\delta ^{2}}{16}} \right) ^{n} \frac{\delta }{2}. \end{aligned}$$
(A.5)

Since \(\tan s \ge s\) for all \(s>0\), we have, by (A.4) and (A.5), that

$$\begin{aligned} \left[ \int _{0}^{\infty } \left( \frac{2}{1 + t^{2}} \right) ^{n+1} dt \right] ^{-1} \int _{\tan \frac{\delta }{2}}^{\infty } \left( \frac{2}{1 + t^{2}} \right) ^{n+1} dt \le \frac{2\pi }{\delta } \left( \dfrac{1 + \frac{\delta ^{2}}{16}}{1 + \frac{\delta ^{2}}{4}} \right) ^{n}. \end{aligned}$$
(A.6)

Note that \(\varphi _{n}\) is an even function for each \(n \in {\mathbb {N}}\). This together with (A.6) yields that

$$\begin{aligned} \lim _{n \rightarrow \infty } \int _{\delta \le |y| \le \pi } \varphi _{n}(y) d y \le \lim _{n \rightarrow \infty } \frac{4\pi }{\delta } \left( \dfrac{1 + \frac{\delta ^{2}}{16}}{1 + \frac{\delta ^{2}}{4}} \right) ^{n} = 0. \end{aligned}$$

Therefore, (B.3) holds.

Hence, the sequence \(\{\varphi _{n}\}_{n \in {\mathbb {N}}}\) is an approximate identity. Thus, from Lemma A.1, we infer that for any \(f \in C_y^0\left( {\mathbb {T}}, L_x^1({\mathbb {R}}) \right) \), \(\varphi _{n} *_y f\) converges to f in \(C_y^0\left( {\mathbb {T}}, L_x^1({\mathbb {R}}) \right) \) as \(n \rightarrow \infty \).

It remains then to show that \(\varphi _{n} *_y f\) is a trigonometric polynomials on y. We claim that \(\varphi _{n}\) is a trigonometric polynomial. By the binomial theorem, we have

$$\begin{aligned} \begin{aligned} (1 + \cos y)^{n}&= 2^{n} \left( \cos \frac{y}{2} \right) ^{2n} \\&= 2^{n} \dfrac{\left( e^{i \frac{y}{2}} + e^{- i \frac{y}{2}}\right) ^{2n}}{2^{2n}} \\&= 2^{-n} \sum _{k=0}^{2n} \begin{pmatrix} 2n \\ k \end{pmatrix} e^{\frac{ky}{2}}e^{- \frac{2n-k}{2} y} \\&= 2^{-n} \sum _{k=0}^{2n} \begin{pmatrix} 2n \\ k \end{pmatrix} e^{i (k-n)y} = 2^{-n} \sum _{k=-n}^{n} \begin{pmatrix} 2n \\ k \end{pmatrix} e^{i k y}. \end{aligned} \end{aligned}$$
(A.7)

Thus, we can write

$$\begin{aligned} \varphi _{n}(y)=\sum _{k=-n}^{n} a_{n k} e^{i k y}, \quad \hbox {where}\, a_{n k}=2^{-n} c_{n}\left( \begin{array}{c} {2 n} \\ {n+k} \end{array} \right) \end{aligned}$$

Namely, \(\varphi _{n}\) is a trigonometric polynomial. This implies that

$$\begin{aligned} \begin{aligned} \varphi _{n} *_y f(x,y) = \int _{-\pi }^{\pi } \sum _{k=-n}^{n} a_{n k} e^{i k(y-t)} f(x,t) d t&=\sum _{k=-n}^{n} a_{n k} e^{i k y} \int _{-\pi }^{\pi } e^{i k t} f(x,t) d t \\&=\sum _{k=-n}^{n} b_{k}(x) e^{i k y} , \end{aligned} \end{aligned}$$

where

$$\begin{aligned} b_{k}(x) =a_{n k} e^{i k y} \int _{-\pi }^{\pi } e^{i k t} f(x,t) d t. \end{aligned}$$

This finishes the proof of this lemma. \(\square \)

Continuity of the Minimization Value \(m_{\omega }\)

Lemma B.1

Let \(p\in (1,5)\). There exists a constant \(C( p)>0\) such that if \(0< \omega _{1}<\omega _{2} < \infty \), and \(Q_{\omega _{1}}\) and \(Q_{\omega _{2}}\) are minimizers of the variational problems for \(m_{\omega _{1}}\) and \(m_{\omega _{2}}\), respectively, then, we have

$$\begin{aligned} m_{\omega _{1}}&\le m_{\omega _{2}} - \frac{{\mathcal {M}}(Q_{\omega _{2}})}{p+1}(\omega _{2}-\omega _{1}) + C(d, p)\frac{{\mathcal {M}}(Q_{\omega _{2}})^{2}}{m_{\omega _{2}}}|\omega _{2}-\omega _{1}|^{2}, \end{aligned}$$
(B.1)
$$\begin{aligned} m_{\omega _{2}}&\le m_{\omega _{1}} + \frac{{\mathcal {M}}(Q_{\omega _{1}})}{p+1}(\omega _{2}-\omega _{1}) + C(d, p)\frac{{\mathcal {M}}(Q_{\omega _{1}})^{2}}{m_{\omega _{1}}}|\omega _{2}-\omega _{1}|^{2}. \end{aligned}$$
(B.2)

In particular, \(m_{\omega }\) is continuous and strictly increasing on \((0, \infty )\).

Proof

Let us begin with a proof of (B.1). Put \(Q_{\omega _{2},\lambda }(x, y) := \lambda Q_{\omega _{2}}(x, y)\) for \(\lambda >0\). Since \({\mathcal {N}}_{\omega _{2}}(Q_{\omega _{2}})=0\), we see that

$$\begin{aligned} \begin{aligned} {\mathcal {N}}_{\omega _{1}}(Q_{\omega _{2},\lambda })&= \lambda ^{2}\Vert \partial _{x} Q_{\omega _{2}}\Vert _{L^{2}}^{2} + \lambda ^{2} \Vert |D|_{y}^{\frac{1}{2}} Q_{\omega _{2}}\Vert _{L^{2}}^{2} + \lambda ^{2}\omega _{1} {\mathcal {M}}(Q_{\omega _{2}}) -\lambda ^{p+1} \Vert Q_{\omega _{2}}\Vert _{L^{p+1}}^{p+1} \\&= \lambda ^{2} \Bigm \{ \Vert Q_{\omega _{2}}\Vert _{L^{p+1}}^{p+1} + (\omega _{1} -\omega _{2}) {\mathcal {M}}(Q_{\omega _{2}}) -\lambda ^{p-1} \Vert Q_{\omega _{2}}\Vert _{L^{p+1}}^{p+1} \Bigm \}. \end{aligned}\nonumber \\ \end{aligned}$$
(B.3)

We define \(\lambda _{*} < 1\) by

$$\begin{aligned} \lambda _{*} := \left( 1 + (\omega _{1}-\omega _{2}) \frac{{\mathcal {M}}(Q_{\omega _{2}})}{\Vert Q_{\omega _{2}}\Vert _{L^{p+1}}^{p+1}}\right) ^{\frac{1}{p-1}}. \end{aligned}$$
(B.4)

so that \({\mathcal {N}}_{\omega _{1}}(Q_{\omega _{2},\lambda _{*}})=0\). Thus,

$$\begin{aligned} m_{\omega _{1}} \le {\mathcal {I}}_{\omega _{1}}(Q_{\omega _{2},\lambda _{*}}) = \lambda _{*}^{2} {\mathcal {I}}_{\omega _{1}}(Q_{\omega _{2}}) = \lambda _{*}^{2}m_{\omega _{2}}. \end{aligned}$$
(B.5)

The Taylor expansion yields that there exists \(\theta _{*} \in (0,1)\), depending on \(\omega _{1}\) and \(\omega _{2}\), satisfying

$$\begin{aligned} \begin{aligned} \lambda _{*}^{2}&= 1+ \frac{2}{p-1} (\omega _{1}-\omega _{2}) \frac{{\mathcal {M}}(Q_{\omega _{2}})}{\Vert Q_{\omega _{2}}\Vert _{L^{p+1}}^{p+1}}\\&\quad + \frac{2(3-p)}{(p-1)^{2}} \Big \{ 1+ \theta _{*} (\omega _{1}-\omega _{2}) \frac{{\mathcal {M}}(Q_{\omega _{2}})}{\Vert Q_{\omega _{2}}\Vert _{L^{p+1}}^{p+1}} \Big )^{\frac{2(2-p)}{p-1}} \Big ((\omega _{1}-\omega _{2}) \frac{{\mathcal {M}}(Q_{\omega _{2}})}{\Vert Q_{\omega _{2}}\Vert _{L^{p+1}}^{p+1}} \Big )^{2}\\&\le 1 - \frac{{\mathcal {M}}(Q_{\omega _{2}})}{(p+1)m_{\omega _{2}}}(\omega _{2} -\omega _{1}) + C(d, p)\frac{{\mathcal {M}}(Q_{\omega _{2}})^{2}}{m_{\omega _{2}}^{2}}|\omega _{2}-\omega _{1}|^{2}, \end{aligned} \end{aligned}$$
(B.6)

where \(C( p)>0\) is some constant depending only on and p. In the last estimate, we used

$$\begin{aligned} m_{\omega _{2}} = {\mathcal {S}}_{\omega _{2}}(Q_{\omega _{2}}) = \frac{p-1}{2(p+1)} \Vert Q_{\omega _{2}}\Vert _{L^{p+1}}^{p+1} \end{aligned}$$

which is a consequence of (4.1) since \({\mathcal {N}}_{\omega _{2}}(Q_{\omega _{2}}) = 0\). Combining (B.5) with (B.6), we obtain the desired inequality

$$\begin{aligned} m_{\omega _{1}} \le m_{\omega _{2}} - \frac{{\mathcal {M}}(Q_{\omega _{1}})}{p+1}(\omega _{2}-\omega _{1}) + C(d, p)\frac{{\mathcal {M}}(Q_{\omega _{2}})^{2}}{m_{\omega _{2}}}|\omega _{2}-\omega _{1}|^{2}. \end{aligned}$$

Thus, (B.1) holds. We can obtain (B.2) similarly. This completes the proof. \(\square \)

Table of Notations

Symbols

Descriptions or equation numbers

X

(1.5)

\(X_{2}\)

\(X_2 =H^2_xL^2_y \cap L^2_xH^{1}_y({\mathbb {R}}\times {\mathbb {T}})\)

\(X_{k}\)

\(X_k =H^k_xL^2_y \cap L^2_xH^{\frac{k}{2}}_y({\mathbb {R}}\times {\mathbb {T}})\)

\({\mathcal {M}}\)

(1.3)

\({\mathcal {H}}\)

(1.2)

\({\mathcal {S}}_{\omega }, \widetilde{{\mathcal {S}}}_{\omega }, {\mathcal {S}}_{\omega , {\mathbb {R}}}\)

(1.11), (4.13), (4.6)

\({\mathcal {N}}_{\omega }, \widetilde{{\mathcal {N}}}_{\omega }, {\mathcal {N}}_{\omega , {\mathbb {R}}}\)

(1.13), (4.14), (4.7)

\({\mathcal {I}}_{\omega }, \widetilde{{\mathcal {I}}}_{\omega }\)

(4.1), (4.16)

\(R_{\omega }\)

Ground state of (1.7), \((2\omega )^{\frac{1}{p-1}} {{\,\mathrm{sech}\,}}(\sqrt{\omega } x)\)

\(Q_{\omega }, {\widetilde{Q}}_{\omega }\)

Ground state of (1.6), (4.10)

\({\mathcal {S}}_{{\mathbb {R}}}, {\mathcal {N}}_{{\mathbb {R}}}, m_{{\mathbb {R}}}, R, Q\)

\({\mathcal {S}}_{{\mathbb {R}}} = {\mathcal {S}}_{1, {\mathbb {R}}}, \ {\mathcal {N}}_{{\mathbb {R}}} = {\mathcal {N}}_{1, {\mathbb {R}}}, \ m_{{\mathbb {R}}} = m_{1, {\mathbb {R}}}, \ R = R_{1}, \ Q = Q_{1} \)

\(m_{\omega }, {\widetilde{m}}_{\omega }, m_{{\mathbb {R}}}\)

(1.12), (4.12), (4.5)

\(\omega _{p}\)

\(\frac{4}{(p-1)(p+3)}\)

\(\omega _{*}\)

Given in Theorem 1.3

\(\nu _{\omega }\)

\(\frac{\omega }{\omega _{p}}\)

\(L_{\omega , +}, L_{\omega , -}\)

(2.2)

\(L_{\omega , +, n}, L_{\omega , -, n}\)

(2.3)

\(L_{\omega , \text {g}, +}\)

(4.44)

\(S_{\omega }(a)\)

(3.9)

\(A_{n}\)

\(L_{\omega _{p}, +, n}\)

J

(3.3)

\(NL(v, R_{\omega })\)

(3.6)

f(z)

\(f(z) = |z|^{p-1}z\)

F(s)

\(F(s) = f(sv + R_{\omega })\)

\(P_{\le k}\)

(3.14)

\(\lambda _{0}\)

Positive eigenvalue of \(- J{\mathcal {S}}_{\omega }^{\prime \prime }\), (3.15)

\(\chi \)

Eigenfunction of \(- J{\mathcal {S}}_{\omega }^{\prime \prime }\) corresponding to \(\lambda _{0}\)

\(\lambda _{2}(a)\)

Second eigenvalue of \(-\partial _{xx} + |D_{y}| + \omega (a) - p \varphi (a)^{p-1}\)

\(\lambda (\omega _{p})\)

Second eigenvalue of \(L_{\omega _{p}, +}\)

\({\mathcal {P}} \), \({\mathcal {Q}} \)

Trigonometric polynomials on y

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahri, Y., Ibrahim, S. & Kikuchi, H. Transverse Stability of Line Soliton and Characterization of Ground State for Wave Guide Schrödinger Equations. J Dyn Diff Equat 33, 1297–1339 (2021). https://doi.org/10.1007/s10884-020-09937-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09937-1

Keywords

Navigation