Skip to main content
Log in

Exploring the Outcomes of Sulphur Sources on ZnO/CdS Nanocomposites Towards Photocatalytic Degradation of Mordant Black 11 Dye

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanostructured ZnO/CdS composites were synthesized using hydrothermal method by varying the sulphur source; thiourea (TU) and thioglycolic acid (TGA). Pure ZnO and two samples of CdS were prepared by varying the sulphur source in order to compare the results of the nanocomposite with the pure nanomaterials. X-ray diffraction analysis shows the average particle size of the ZnO/CdS (TU) and ZnO/CdS (TGA) nanocomposite to be 12.81 nm and 25 nm, respectively. High resolution TEM analysis shows the particle size of ZnO/CdS (TU) and ZnO/CdS (TGA) to be 12 and 17 nm respectively. UV- visible- reflectance spectra were recorded and the band gaps were estimated to be 2.4 eV and 2.84 eV for ZnO/CdS (TU) and ZnO IR/CdS (TGA). The porosity of ZnO/CdS (TU) was 14 nm and ZnO/CdS (TGA) was 2.5 nm. The photocatalytic activity for the degradation of Mordant black 11 dye under sunlight was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. R. Pant, B. Pant, H. J. Kim, A. Amarjargal, C. H. Park, L. D. Tijing, E. K. Kim, and C. S. Kim (2013). Ceram. Int. 39, 5083–5091.

    Article  Google Scholar 

  2. D. Lu, Y. Zhang, S. Lin, L. Wang, and C. Wang (2013). J. Alloys Compd. 579, 336–342.

    Article  CAS  Google Scholar 

  3. M. Sumathi, A. Prakasam, and P. M. Anbarasan (2020). J. Clust. Sci. 31, 277–286.

    Article  CAS  Google Scholar 

  4. L. Reijenders (2008). J. Hazard. Mater. 152, 440–445.

    Article  Google Scholar 

  5. H. R. Pant, C. H. Park, B. Pant, L. D. Tijing, H. Y. Kim, and C. S. Kim (2012). Ceram. Int. 38, 2943–2950.

    Article  CAS  Google Scholar 

  6. P. K. J. Robertson, J. M. C. Robertson, and D. W. Bahnemann (2012). J. Hazard. Mater. 211–212, 161–171.

    Article  Google Scholar 

  7. D. Khayammi, A. A. Ensafi, N. Khazemifard, and B. Rezaei (2020). Environ. Sci. Pollut. Res. 27, 8759–8771.

    Article  Google Scholar 

  8. K. M. Lee, S. B. Abdul Hamid, and C. W. Lai (2015). Mater. Sci. Semicond. Process. 39, 40–48.

    Article  CAS  Google Scholar 

  9. P. Kundu, P. A. Deshpande, G. Madras, and N. Ravishankar (2011). J. Mater. Chem. 21, 4209–4216.

    Article  CAS  Google Scholar 

  10. K. Dong, F. X. Qiu, X. R. Guo, J. C. Xu, D. Y. Yang, and K. C. He (2013). Polym. Plast. Technol. 52, 452–460.

    Article  CAS  Google Scholar 

  11. V. Ramasamy, C. Anandan, and G. Murugadoss (2013). Mater. Sci. Semicond. Process. 16, 1759–1764.

    Article  CAS  Google Scholar 

  12. G. Yang, W. Yan, Q. Zhang, S. Shen, and S. Ding (2013). Nanoscale 5, 12432–12439.

    Article  CAS  Google Scholar 

  13. G. Thirumala Rao, B. Babu, R. Joyce Stella, V. Pushpa Manjari, C. Venkata Reddy, J. Shim, and R. V. S. S. N. Ravikumar (2015). J. Mol. Struct 1081, 254–259.

    Article  CAS  Google Scholar 

  14. P. Lu, W. Zhou, Y. Li, J. Wang, and P. Wu (2017). Appl. Surf. Sci. 399, 396–402.

    Article  CAS  Google Scholar 

  15. D. Anbuselvan and S. Muthukumaran (2015). Opt. Mater. 42, 124–131.

    Article  CAS  Google Scholar 

  16. D. Suresh, P. C. Nethravathi, Udayabhanu, M. A. Pavan Kumar, H. Raja Naika, H. Nagabhushana, and S. C. Sharma (2015). Mater. Sci. Semicond. Process. 40, 759–765.

    Article  CAS  Google Scholar 

  17. S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr., and M. R. Davolos (2001). Int. J. Inorg. Mater. 3, 749–754.

    Article  CAS  Google Scholar 

  18. C. Unni, D. Philip, and K. G. Gopchandran (2008). Spectrochim. Acta A 71, 1402–1407.

    Article  CAS  Google Scholar 

  19. D. Bera, L. Qian, S. Sabui, S. Santra, and P. H. Holloway (2008). Opt. Mater. 30, 1233–1239.

    Article  CAS  Google Scholar 

  20. O. M. Ntwaeaborwa, R. E. Kroon, V. Kumar, T. Dubroca, J. P. Ahn, J. K. Park, and H. C. Swart (2009). J. Phys. Chem. Solids 70, 1438–1442.

    Article  CAS  Google Scholar 

  21. T. Senasu, T. Chankhanittha, K. Hemavibool, and S. Nanan (2020). Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2020.105558.

    Article  Google Scholar 

  22. V. Eskizeybek, F. Sar, H. Gulce, A. Gulce, and A. Avc (2012). Appl. Catal. 119–120, 197–206.

    Article  Google Scholar 

  23. G. Tao, Q. Li, and T. Wang (2005). Chem. Mater. 17, 887–892.

    Article  Google Scholar 

  24. M. H. Habibi and M. H. Rahmati (2014). Spectrochim. Acta A 133, 13–18.

    Article  CAS  Google Scholar 

  25. L. Irimpan, V. P. N. Nampoor, and P. Radhakrishnan (2008). J. Appl. Phys. 103, 094914.

    Article  Google Scholar 

  26. T. K. Jana, A. Pal, and K. Chatterjee (2014). J. Alloys Compd. 583, 510–515.

    Article  CAS  Google Scholar 

  27. S. Khanchandani, S. Kundu, A. Patra, and A. K. Ganguli (2012). J. Phys. Chem. C 116, 23653–23662.

    Article  CAS  Google Scholar 

  28. R. M. Kong, Y. Zhao, Y. Zheng, and F. Qu (2017). RSC Adv. 7 (50), 31365–31371.

    Article  CAS  Google Scholar 

  29. J. Liu, K. Zhu, B. Sheng, Z. Li, G. Tai, J. Qiu, and P. Liu (2015). J. Alloys Compd. 618, 67–72.

    Article  CAS  Google Scholar 

  30. H. Zhao, Y. Dong, P. Jiang, G. Wang, H. Miao, R. Wu, and C. Zhang (2015). ACS Sustain. Chem. Eng. 3, 969–977.

    Article  CAS  Google Scholar 

  31. Q. Shen, X. Zhao, S. Zhou, W. Hou, and J. J. Zhu (2011). J. Phys. Chem. C 115, 7958–17964.

    Google Scholar 

  32. J. K. Vaishnav, S. S. Arbuj, S. B. Rane, and D. P. Amalnerkar (2014). RSC Adv. 4, 47637–47642.

    Article  CAS  Google Scholar 

  33. X. Wang, G. Liu, L. Wang, Z. G. Chen, G. Q. Lu, and H. M. Cheng (2012). Adv. Energy Mater. 2, 42–46.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to UGC Minor Research Project [MRP-5666/15 (SERO/UGC)] for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Linet J..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharon Tamil Selvi, S., Hannah Priya, G., Ragu, R. et al. Exploring the Outcomes of Sulphur Sources on ZnO/CdS Nanocomposites Towards Photocatalytic Degradation of Mordant Black 11 Dye. J Clust Sci 33, 375–386 (2022). https://doi.org/10.1007/s10876-020-01963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01963-9

Keywords

Navigation