Issue 4, 2021

Electrocatalytically inactive copper improves the water adsorption/dissociation on Ni3S2 for accelerated alkaline and neutral hydrogen evolution

Abstract

Nickel dichalcogenides, especially Ni3S2, present inferior alkaline and neutral hydrogen evolution activity due to their sluggish water dissociation kinetics. Although these materials hold promise as non-noble metal-based electrocatalysts for the hydrogen evolution reaction (HER) in acidic media, developing efficient strategies to enhance the water dissociation processes of nickel dichalcogenides in alkaline and neutral solutions is also an important area of research. The present work discloses an electrocatalytically inactive copper doping strategy to promote the water adsorption and dissociation process of Ni3S2 (Cu-Ni3S2) nanoparticles supported on nickel foam (NF) towards improving the alkaline and neutral hydrogen evolution reactions. Based on combined density functional theory calculations and electrochemical characterizations, the doping of Cu can accelerate the Volmer step and therefore strengthen the water adsorption/dissociation on the respective Ni sites and S sites during the HER process. As a result, the electrocatalyst exhibits superior and stable HER performance in both 1 M KOH and 1 M phosphate-buffered saline (PBS) solutions, with much lower overpotentials of 121 and 228 mV at a current density of 10 mA cm−2, respectively, in comparison to bare Ni3S2. We therefore conclude that the tailored control of the water adsorption/dissociation capability of Ni3S2 will open significant opportunities for the rational design of alkaline and neutral electrocatalysts from earth-abundant and stable materials.

Graphical abstract: Electrocatalytically inactive copper improves the water adsorption/dissociation on Ni3S2 for accelerated alkaline and neutral hydrogen evolution

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2020
Accepted
04 Jan 2021
First published
06 Jan 2021

Nanoscale, 2021,13, 2456-2464

Electrocatalytically inactive copper improves the water adsorption/dissociation on Ni3S2 for accelerated alkaline and neutral hydrogen evolution

L. Zhang, X. Gao, Y. Zhu, A. Liu, H. Dong, D. Wu, Z. Han, W. Wang, Y. Fang, J. Zhang, Z. Kou, B. Qian and T. Wang, Nanoscale, 2021, 13, 2456 DOI: 10.1039/D0NR07275C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements