Skip to main content
Log in

CAN bus based current sharing control of high-power switching converters

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

A digital current sharing control method leveraging a CAN bus is developed to inhibit the fluctuating current distributions of parallel converters in high-output oxidation power systems. When compared to conventional current sharing strategies, the proposed design significantly reduces circuit complexity without resorting to an analog current sharing bus, and is extremely robust in maintaining system functionality against one or multiple module failures. The digital control design also features anti-interference among high-power switching converters. In addition to detailing the operation principles and mathematical deductions of the state-space average model, the design of a current sharing controller and a current sharing scheme based on a CAN bus are presented to analyze the steady-state operation of parallel converters and dynamic-state operation. Based on these observations, a proof-of-concept prototype was developed that offers a maximum output power of nearly 400 kW with a current sharing error (CSE) below 2.1%. In addition, this system features outstanding anti-interference capability in intense electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang, W., Liu, W., Zang, C., Liu, L.: Multiagent system-based integrated solution for topology identification and state estimation. IEEE Trans. Ind. Inf. 13(2), 714–724 (2017)

    Article  Google Scholar 

  2. Chen, W., Wang, G.: Decentralized voltage-sharing control strategy for fully modular input-series–output-series system with improved voltage regulation. IEEE Trans. Ind. Electron. 62(5), 2777–2787 (2015)

    Article  Google Scholar 

  3. Jiang, C., Du, H., Wen, G.: Current sharing control for parallel DC-DC buck converters based on consensus theory. In: Proceedings of the 13th IEEE International Conference on Control and Automations, pp. 536–540, 2017.

  4. Rabkowski, J., Peftitsis, D., Nee, H.P.: Parallel-operation of discrete SiC BJTs in a 6-kW/250-kHz dc/dc boost converter. IEEE Trans. Power Electron. 29(5), 2482–2491 (2014)

    Article  Google Scholar 

  5. Peftitsis, D., Baburske, R., Rabkowski, J., Lutz, J., Tolstoy, G., Nee, H.P.: Challenges regarding parallel connection of SiC JFETs. IEEE Trans. Power Electron. 28(3), 1449–1463 (2013)

    Article  Google Scholar 

  6. Khalil, A., Mohamed, O., Wang, J.: Networked control of parallel DC/DC buck converters. In: Proceedings of the IEEE Jordan Conference in Application Electrical Engineering and Computer Technology, pp. 1–6. 2015.

  7. Liu, H., Yang, Y., Wang, X., Loh, P.C., Blaabjerg, F., Wang, W., Xu, D.: An enhanced dual droop control scheme for resilient active power sharing among paralleled two-stage converters. IEEE Trans. Power Electron. 32(8), 6091–6104 (2017)

    Article  Google Scholar 

  8. Wang, J.B.: Parallel DC/DC converters system with a novel primary droop current sharing control. IET Power Electron. 5(8), 1569–1580 (2012)

    Article  Google Scholar 

  9. Qu, L., Zhang, D., Bao, Z.: Output current-differential control scheme for input-series-output-parallel-connected modular DC-DC converters. IEEE Trans. Power Electron. 32(7), 5699–5711 (2017)

    Article  Google Scholar 

  10. Abramov, E., Vekslender, T., Kirshenboim, O., Peretz, M.M.: Fully-integrated digital average current-mode control voltage regulator module IC. IEEE J. Emerg. Sel. Topics Power Electron. 6(2), 485–499 (2018)

    Article  Google Scholar 

  11. Li, Q., Liu, S., Xu, H., Wang, X.: Research on the maximum current automatic current-sharing control based on DSP. In: Proceedings of the 13th IEEE International Conference on Control Automations, pp. 1044–1049, 2017.

  12. Tahim, A.P.N., Pagano, D.J., Lenz, E., Stramosk, V.: Modeling and stability analysis of islanded DC Microgrids under droop control. IEEE Trans. Power Electron. 30(8), 4597–4607 (2015)

    Article  Google Scholar 

  13. Chen, S.Y., Yang, B.C., Pu, T.A., Chang, C.H., Lin, R.C.: Active current sharing of a parallel DC-DC converters system using bat algorithm optimized two-DOF PID control. IEEE Access 7, 84757–84769 (2019)

    Article  Google Scholar 

  14. Genc, N., Iskender, I.: DSP-based current sharing of average current controlled two-cell interleaved boost power factor correction converter. IET Power Electron. 4(9), 1015–1022 (2011)

    Article  Google Scholar 

  15. Yan, H., Xu, Y.X., Zou, J.B., Wang, B.C., Jiang, S.L.: A maximum current sharing method for dual-redundancy brushless DC Motor control. In: Proceedings of the 17th International Conference on Electrical, Machines and Systems, pp. 1057–1061, 2015.

  16. Effler, S., Halton, M., Rinne, K.: Efficiency-based current distribution scheme for scalable digital power converters. IEEE Trans. Power Electron. 26(4), 1261–1269 (2011)

    Article  Google Scholar 

  17. Fang, W., Liu, X.D., Liu, S.C., Liu, Y.F.: A digital parallel current-mode control algorithm for DC–DC converters. IEEE Trans. Ind. Inf. 10(4), 2146–2153 (2014)

    Article  Google Scholar 

  18. Ashiebi, A., Khalil, A., Wang, J.: Networked control of parallel DC/DC converters over CAN bus. In: Proceedings of the IEEE International Conference on Power System Technology, pp. 1–6, 2016.

  19. Chae, S., Song, Y., Park, S., et al.: Digital current sharing method for parallel interleaved DC–DC converters using input ripple voltage. IEEE Trans. Ind. Inf. 8(3), 536–5441 (2012)

    Article  Google Scholar 

  20. Saggini, S., Ghioni, M., Geraci, A.: An innovative digital control architecture for low-voltage high-current dc-dc converters with tight voltage regulation. IEEE Trans. Power Electron. 19, 210–218 (2004)

    Article  Google Scholar 

  21. Fugiglando, U., Massaro, E., Santi, P., Milardo, S., Abida, K., Stahlmann, R., Netter, F., Ratti, C.: Driving behavior analysis through CAN bus data in an uncontrolled environment. IEEE Trans. Intell. Transport Syst. 20(2), 737–748 (2019)

    Article  Google Scholar 

  22. De Andrade, R., Hodel, K.N., Justo, J.F., Lagana, A.M., Santos, M.M., Gu, Z.H.: Analytical and experimental performance evaluations of CAN-FD bus. IEEE Access 6, 21287–21295 (2018)

    Article  Google Scholar 

  23. Yao, W., Hong, X., Lu, Z.: A novel current-sharing scheme based on magamp. J. Zhejiang Univ. Sci. A 9(8), 1150–1156 (2008)

    Article  Google Scholar 

  24. Mao, Z.: Research on Current Sharing of Electroplate Power Supply Based on Magnetic Switching Control. Zhejiang University, Hangzhou (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFD0400903) and Light Alloy Processing Science and Technology National Defense Key Discipline Laboratory Open Fund (EG201780504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Q., Zeng, M., Zhang, Y. et al. CAN bus based current sharing control of high-power switching converters. J. Power Electron. 21, 529–540 (2021). https://doi.org/10.1007/s43236-020-00198-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00198-1

Keywords

Navigation