Skip to main content

Advertisement

Log in

Neighbors degree sum energy of graphs

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new matrix for a graph G in which i th row sum and i th column sum are both equal to neighbors degree sum of i th vertex and define a new variant of graph energy called neighbors degree sum energy \(E_{N} (G)\) of a graph G. The striking feature of this new matrix is that it is related with some well known degree based topological indices like Zagreb type indices, forgotten indices, etc. When \(E_N(G)\) values of some molecules containing hetero atoms are correlated with their total \(\pi \)–electron energy, we got a good correlation with the correlation coefficient \(r=0.982\). \(E_N(G)\) values of some selected 25 polyaromatic hydrocarbons also showed excellent correlation with their \(\pi \)–electron energy values with the correlation coefficient \(r=0.997\). Further, we computed neighbors degree sum energy of some standard classes of graphs and established some bounds and characterizations on largest eigenvalue of N(G) and neighbors degree sum energy of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aouchiche, M., Hansen, P.: Distance spectra of graphs: a survey. Linear Algebra Appl. 458, 301–386 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bapat, R.B.: Graphs and Matrices. Springer, Berlin (2010)

    Book  Google Scholar 

  3. Bernard, S., Child, J.M.: Higher Algebra. Macmillan India Ltd, New Delhi (2001)

    Google Scholar 

  4. Biernacki, M., Pidek, H., Ryll-Nardzewsk, C.: Sur une iné galité entre des intégrals dénies. Maria Curie SkÁĆodowska Univ. A4, 1–4 (1950)

    Google Scholar 

  5. Britto-Antony-Xavier, G., Suresh, E., Gutman, I.: Counting relations for general Zagreb indices. Kragujev. J. Math. 38, 95–103 (2014)

    Article  MathSciNet  Google Scholar 

  6. Brouwer, A., Haemers, W.: Spectra of Graphs. Springer, Berlin (2012)

    Book  Google Scholar 

  7. Coulson, C.A., Streitwieser, J.: Dictionary of \(\pi \)-Electron Calculations. Freeman, San Francisco (1965)

    Google Scholar 

  8. Cvetković, D., Rowlinson, P., Simić, S.K.: Eigenvalue bounds for the signless Laplacian. Publ. Inst. Math. (Beograd) 81, 11–27 (2007)

    Article  MathSciNet  Google Scholar 

  9. Kalman, D.: A matrix proof of Newton’s identities. Math. Mag. 73, 313–315 (2000)

    Article  MathSciNet  Google Scholar 

  10. Diaz, B., Metcalf, T.: Stronger forms of a class of inequalities of G. Bull. Am. Math. Soc. 69, 415–418 (1963)

    Article  Google Scholar 

  11. Furtula, B., Gutman, I.: A forgotten topological index. J. Math. Chem. 53, 1184–1190 (2015)

    Article  MathSciNet  Google Scholar 

  12. Gutman, I.: Degree-based topological indices. Croat. Chem. Acta 86, 351–361 (2013)

    Article  Google Scholar 

  13. Gutman, I., Kulli, V.R., Chaluvaraju, B., Boregowda, H.S.: On Banhatti and Zagreb indices. J. Int. Math. Virtual Inst. 7, 53–67 (2017). https://doi.org/10.7251/JIMVI1701053G

    Article  MathSciNet  MATH  Google Scholar 

  14. Gutman, I., Trinajsti, N.: Graph theory and molecular orbitals. Total \(\pi \)-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)

    Article  Google Scholar 

  15. Gutman, I., Ruščič, B., Trinajstić, N., Wilcox, C.F.: Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 62, 3399–3405 (1975)

    Article  Google Scholar 

  16. Kober, H.: On the arithmatic and geometric means and on Holder’s inequality. Proc. Am. Math. Soc. 9, 452–459 (1958)

    MATH  Google Scholar 

  17. Lee, H.: Topics in Inequalities-Theorems and Techniques. The IMO Compendium Group (2007)

  18. Li, X., Zhao, H.: Trees with the first smallest and largest generalized topological indices. MATCH Commun. Math. Comput. Chem. 50, 57–62 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Li, X., Zheng, J.: A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem. 54, 195–208 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Mohar, B.: The Laplacian spectrum of graphs. In: Alavi, Y., Chartrand, G., Ollermann, O.R., Schwenk, A.J. (eds.) Graph Theory, Combinatorics and Applications, vol. 2, pp. 871–898. Wiley, New York (1991)

    Google Scholar 

  21. Mondal, S., De, N., Pal, A.: On some new neighbourhood degree based indices. Acta Chem. Lasi 27, 31–46 (2019)

    Google Scholar 

  22. Rad, N.J., Jahanbani, A., Gutman, I.: Zagreb energy and Zagreb estrada index of graphs. MATCH Commun. Math. Comput. Chem. 79, 371–386 (2018)

    MathSciNet  Google Scholar 

  23. Ramachandran, K.I., Deepa, G., Namboori, K.: Computational Chemistry and Molecular Modelling: Principles and Applications. Springer, Berlin (2008)

    Google Scholar 

  24. Ramane, H.S., Gudimani, S.B., Shinde, S.S.: Signless Laplacian polynomial and characteristic polynomial of a graph. J. Discrete Math. (2013). https://doi.org/10.1155/2013/105624

    Article  MATH  Google Scholar 

  25. Ramane, H.S., Revankar, D.S., Patil, J.B.: Bounds for the degree sum eigenvalues and degree sum energy of a graph. Int. J. Pure Appl. Math. Sci. 6, 161–167 (2013)

    Google Scholar 

  26. Ramane, H.S., Pise, K.S., Patil, D.D.: Note on inverse sum indeg index of graphs. AKCE Int. J. Graphs Comb. (2020). https://doi.org/10.1016/j.akcej.2019.12.002

    Article  MathSciNet  MATH  Google Scholar 

  27. Ramane, H.S., Jummannaver, R.B., Gutman, I.: Seidel Laplacian energy of graphs. Int. J. Appl. Graph. Theory 2, 74–82 (2017)

    Google Scholar 

  28. Ramane, H.S., Gutman, I., Patil, J.B., Jummannaver, R.B.: Seidel signless Laplacian energy of graphs. Math. Interdiscip. Res. 2, 181–192 (2017)

    Google Scholar 

  29. Ranjini, P.S., Lokesha, P.S., Usha, A.: Relation between phenylene and hexagonal squeeze using harmonic index. Int. J. Graph Theory 1, 116–121 (2013)

    Google Scholar 

  30. Shirdel, G.H., Rezapour, H., Sayadi, A.M.: The hyper-Zagreb index of graph operations. Iran. J. Math. Chem. 4(2), 213–220 (2013)

    MATH  Google Scholar 

  31. Yates, K.: Huckel Molecular Orbital Theory. Academic Press, New York (1978)

    Book  Google Scholar 

Download references

Acknowledgements

The author Boregowda H. S. is thankful to Tumkur University for support through research Grant under TU: D.E.V: IQAC-II(4237): 2019-20/60(1), Dated 02/04/2019. Both the authors thank anonymous reviewers for their careful reading of the manuscript, insightful comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Boregowda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boregowda, H.S., Jummannaver, R.B. Neighbors degree sum energy of graphs. J. Appl. Math. Comput. 67, 579–603 (2021). https://doi.org/10.1007/s12190-020-01480-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01480-y

Keywords

Mathematics Subject Classification

Navigation