Skip to main content
Log in

Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

It is well established from previous cross-sectional studies that telomeres shorten with age. However, due to a considerable inter-individual variation in telomere length (TL), its relationship with biological aging is difficult to unpick. Longitudinal repeated assessments of TL changes within individuals should augment our understanding of TL dynamics in aging. This study disentangles within- and inter-individual effects of age on leukocyte telomere length (LTL) dynamics in a large population-based cohort of older adults. A total of 4053 subjects aged 50 and older from the WHO Study on global AGEing and adult health (SAGE) in Shanghai were studied. Relative LTL (T/S ratio) was measured at baseline (2009–2010) and follow-up (2017–2018) by quantitative real-time polymerase chain reaction. We used linear random slope models to analyze LTL dynamics in relation to age and sex and within-subject centering method to distinguish within- versus between-subject effects. We observed LTL shortening in 66.32%, maintenance in 11.23%, and elongation in 22.45% of the study participants. LTL declined significantly with age both cross-sectionally and longitudinally. More importantly, the longitudinal decline in LTL was much greater than the cross-sectional decline (− 0.017 (p < 0.001) versus − 0.002 (p < 0.001) per year). Furthermore, women had a lower within-subject LTL shortening rate than men (− 0.014 versus − 0.020 per year, p < 0.001). The within-individual longitudinal decline in LTL was much greater than the inter-individual cross-sectional decline, indicating that chronological age might impose a greater impact on LTL shortening than other influencing factors combined. Moreover, women showed a lower within-individual LTL shortening rate than men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8.

    CAS  PubMed  Google Scholar 

  2. Gilson E, Géli V. How telomeres are replicated. Nat Rev Mol Cell Biol. 2007;8(10):825–38.

    CAS  PubMed  Google Scholar 

  3. Lingner J, Cooper JP, Cech TR. Telomerase and DNA end replication: no longer a lagging strand problem? Science. 1995;269(5230):1533–4.

    CAS  PubMed  Google Scholar 

  4. Herrmann M, Pusceddu I, März W, Herrmann W. Telomere biology and age-related diseases. Clin Chem Lab Med. 2018;56(8):1210–22.

    CAS  PubMed  Google Scholar 

  5. Hayflick L. Mortality and immortality at the cellular level. A review. Biochemistry (Mosc). 1997;62(11):1180–90.

    CAS  Google Scholar 

  6. Wong JMY, Collins K. Telomere maintenance and disease. Lancet. 2003;362(9388):983–8.

    CAS  PubMed  Google Scholar 

  7. Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464(7288):520–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bendix L, Thinggaard M, Fenger M, Kolvraa S, Avlund K, Linneberg A, et al. Longitudinal changes in leukocyte telomere length and mortality in humans. J Gerontol A Biol Sci Med Sci. 2014;69(2):231–9.

    CAS  PubMed  Google Scholar 

  9. Andrew T, Aviv A, Falchi M, Surdulescu GL, Gardner JP, Lu X, et al. Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs. Am J Hum Genet. 2006;78(3):480–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vasa-Nicotera M, Brouilette S, Mangino M, Thompson JR, Braund P, Clemitson J-R, et al. Mapping of a major locus that determines telomere length in humans. Am J Hum Genet. 2005;76(1):147–51.

    CAS  PubMed  Google Scholar 

  11. Bischoff C, Graakjaer J, Petersen HC, Hjelmborg JVB, Vaupel JW, Bohr V, et al. The heritability of telomere length among the elderly and oldest-old. Twin Res Hum Genet. 2005;8(5):433–9.

    PubMed  Google Scholar 

  12. Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55(5):876–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Njajou OT, Cawthon RM, Damcott CM, Wu S-H, Ott S, Garant MJ, et al. Telomere length is paternally inherited and is associated with parental lifespan. Proc Natl Acad Sci U S A. 2007;104(29):12135–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Broer L, Codd V, Nyholt DR, Deelen J, Mangino M, Willemsen G, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21(10):1163–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hjelmborg JB, Dalgård C, Möller S, Steenstrup T, Kimura M, Christensen K, et al. The heritability of leucocyte telomere length dynamics. J Med Genet. 2015;52(5):297–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, et al. Gender and telomere length: systematic review and meta-analysis. Exp Gerontol. 2014;51:15–27.

    CAS  PubMed  Google Scholar 

  17. Hansen MEB, Hunt SC, Stone RC, Horvath K, Herbig U, Ranciaro A, et al. Shorter telomere length in Europeans than in Africans due to polygenetic adaptation. Hum Mol Genet. 2016;25(11):2324–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lynch SM, Peek MK, Mitra N, Ravichandran K, Branas C, Spangler E, et al. Race, ethnicity, psychosocial factors, and telomere length in a multicenter setting. PLoS One. 2016;11(1):e0146723.

    PubMed  PubMed Central  Google Scholar 

  19. Aviv A, Chen W, Gardner JP, Kimura M, Brimacombe M, Cao X, et al. Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study. Am J Epidemiol. 2009;169(3):323–9.

    PubMed  Google Scholar 

  20. Nordfjäll K, Svenson U, Norrback K-F, Adolfsson R, Lenner P, Roos G. The individual blood cell telomere attrition rate is telomere length dependent. PLoS Genet. 2009;5(2):e1000375.

    PubMed  PubMed Central  Google Scholar 

  21. Müezzinler A, Zaineddin AK, Brenner H. A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev. 2013;12(2):509–19.

    PubMed  Google Scholar 

  22. Berglund K, Reynolds CA, Ploner A, Gerritsen L, Hovatta I, Pedersen NL, et al. Longitudinal decline of leukocyte telomere length in old age and the association with sex and genetic risk. Aging (Albany NY). 2016;8(7):1398–415.

    CAS  Google Scholar 

  23. Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS One. 2010;5(1):e8612.

    PubMed  PubMed Central  Google Scholar 

  24. Kowal P, Chatterji S, Naidoo N, Biritwum R, Fan W, Lopez Ridaura R, et al. Data resource profile: the World Health Organization Study on global AGEing and adult health (SAGE). Int J Epidemiol. 2012;41(6):1639–49.

    PubMed  PubMed Central  Google Scholar 

  25. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47.

    PubMed  PubMed Central  Google Scholar 

  26. van de Pol M, Wright J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav. 2009;77(3):753–8.

    Google Scholar 

  27. Turner KJ, Vasu V, Griffin DK. Telomere biology and human phenotype. Cells. 2019;8(1):73. https://doi.org/10.3390/cells8010073.

    Article  CAS  PubMed Central  Google Scholar 

  28. Sidorov I, Kimura M, Yashin A, Aviv A. Leukocyte telomere dynamics and human hematopoietic stem cell kinetics during somatic growth. Exp Hematol. 2009 Apr;37(4):514–24.

    CAS  PubMed  Google Scholar 

  29. Aviv A. The epidemiology of human telomeres: faults and promises. J Gerontol A Biol Sci Med Sci. 2008;63(9):979–83.

    PubMed  Google Scholar 

  30. Dugdale HL, Richardson DS. Heritability of telomere variation: it is all about the environment! Philos Trans R Soc Lond Ser B Biol Sci. 2018;373(1741):20160450. https://doi.org/10.1098/rstb.2016.0450.

    Article  Google Scholar 

  31. Chen W, Kimura M, Kim S, Cao X, Srinivasan SR, Berenson GS, et al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011;66(3):312–9.

    CAS  PubMed  Google Scholar 

  32. Guzzardi MA, Iozzo P, Salonen M, Kajantie E, Eriksson JG. Rate of telomere shortening and metabolic and cardiovascular risk factors: a longitudinal study in the 1934-44 Helsinki Birth Cohort Study. Ann Med. 2015;47(6):499–505.

    PubMed  Google Scholar 

  33. Simons MJP, Stulp G, Nakagawa S. A statistical approach to distinguish telomere elongation from error in longitudinal datasets. Biogerontology. 2014;15(1):99–103.

    PubMed  Google Scholar 

  34. Liu J, Wang L, Wang Z, Liu J-P. Roles of telomere biology in cell senescence, replicative and chronological ageing. Cells. 2019;8(1):54. https://doi.org/10.3390/cells8010054.

    Article  CAS  PubMed Central  Google Scholar 

  35. Steenstrup T, Hjelmborg JVB, Kark JD, Christensen K, Aviv A. The telomere lengthening conundrum--artifact or biology? Nucleic Acids Res. 2013 Jul;41(13):e131.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cherif H, Tarry JL, Ozanne SE, Hales CN. Ageing and telomeres: a study into organ- and gender-specific telomere shortening. Nucleic Acids Res. 2003;31(5):1576–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35:112–31.

    PubMed  PubMed Central  Google Scholar 

  38. Bekaert S, De Meyer T, Rietzschel ER, De Buyzere ML, De Bacquer D, Langlois M, et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell. 2007;6(5):639–47.

    CAS  PubMed  Google Scholar 

  39. Dalgård C, Benetos A, Verhulst S, Labat C, Kark JD, Christensen K, et al. Leukocyte telomere length dynamics in women and men: menopause vs age effects. Int J Epidemiol. 2015;44(5):1688–95.

    PubMed  PubMed Central  Google Scholar 

  40. Harris SE, Marioni RE, Martin-Ruiz C, Pattie A, Gow AJ, Cox SR, et al. Longitudinal telomere length shortening and cognitive and physical decline in later life: the Lothian Birth Cohorts 1936 and 1921. Mech Ageing Dev. 2016;154:43–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond Ser B Biol Sci. 2018;373(1741):20160436. https://doi.org/10.1098/rstb.2016.0436.

    Article  Google Scholar 

  42. Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, et al. Estrogen activates telomerase. Cancer Res. 1999;59(23):5917–21.

    CAS  PubMed  Google Scholar 

  43. Adams J, Martin-Ruiz C, Pearce MS, White M, Parker L, Zglinicki TV. No association between socio-economic status and white blood cell telomere length. Aging Cell. 2007;6(1):125–8.

    CAS  PubMed  Google Scholar 

  44. Hunt SC, Chen W, Gardner JP, Kimura M, Srinivasan SR, Eckfeldt JH, et al. Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study. Aging Cell. 2008;7(4):451–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shiels PG, McGlynn LM, MacIntyre A, Johnson PCD, Batty GD, Burns H, et al. Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PLoS One. 2011;6(7):e22521.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the participants and the investigators who participated in this study.

Funding

This work was supported by the WHO and the US National Institute on Aging through Interagency Agreements (OGHA 04034785, YA1323-08-CN-0020, Y1-AG-1005-01) and through a research grant (R01-AG034479); the Program for Outstanding Medical Academic Leader, Shanghai, China (2019LJ24); and Shanghai Municipal Health Commission (20204Y0196, 2020YJZX0113, 201840118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figure 1

Correlations of LTL change and LTL at Wave 3 with baseline LTL (PNG 5883 kb)

High resolution image (TIF 1356 kb)

Supplementary Figure 2

Predicted mean LTL in relation to age (by sex) from standard random slope model including interaction between age and sex (PNG 6131 kb)

High resolution image (TIF 1413 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Liu, C., Ruan, Y. et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience 43, 645–654 (2021). https://doi.org/10.1007/s11357-020-00320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00320-y

Keywords

Navigation