Skip to main content
Log in

Modeling of 3D Surface Morphologies for Predicting the Mechanical Contact Behaviors and Associated Electrical Contact Resistance

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The accurate estimation of real contact area plays an important role in predicting the mechanical contact situation and associated electrical contact resistance for engineering rough surfaces. In this work, an improved peak identification method is proposed to reconstruct the rough surface morphologies numerically. A universal calculation process of real contact area and load force under the progressive indentation depth for rough surfaces is developed. Furthermore, a three-dimensional finite element model for analyzing the mechanical contact problem is built and the electromechanical coupling simulation results are compared with that obtained by our novel calculation method. The proposed solution is beneficial for accurate calculation of contact area, which is featured by high aspect ratio in the case of micro-contact. The relationship between electrical contact resistance and load force is also captured in the initial contact process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. London A. 295, 300–319 (1966)

    Article  CAS  Google Scholar 

  2. Thomas, T.R.: Rough Surfaces. Longman Group Limited, New York (1982)

    Google Scholar 

  3. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)

    Article  CAS  Google Scholar 

  4. Scaraggi, M., Carbone, G., Dini, D.: Experimental evidence of micro-EHL lubrication in rough soft contacts. Tribol. Lett. 43, 169–174 (2011)

    Article  CAS  Google Scholar 

  5. Bottiglione, F., Carbone, G., Mangialardi, L., Mantriota, G.: Leakage mechanism in flat seals. J. Appl. Phys. 104902, 1–7 (2009)

    Google Scholar 

  6. Ciavarella, M., Dibello, S., Demelio, G.: Conductance of rough random profiles. Int. J. Solids Struct. 45, 879–893 (2008)

    Article  Google Scholar 

  7. Slade, P.G.: Electrical Contacts: Principles and Applications. CRC, New York (2013)

    Google Scholar 

  8. Bahrami, M., Yovanovich, M.M., Culham, J.R.: Thermal contact resistance at low contact pressure: effect of elastic deformation. Int. J. Heat Mass Transf. 48, 3284–3293 (2005)

    Article  Google Scholar 

  9. Kalin, M.: Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review. Mater. Sci. Eng. A. 374, 390–397 (2004)

    Article  Google Scholar 

  10. Jackson, R.L.: A multi-scale model for contact between rough surfaces. Wear. 261, 1337–1347 (2006)

    Article  CAS  Google Scholar 

  11. Salgon, J.J., RobbeValloire, F., Blouet, J., Bransier, J.: A mechanical and geometrical approach to thermal contact resistance. Int. J. Heat Mass Transf. 40, 1121–1129 (1997)

    Article  CAS  Google Scholar 

  12. Anciaux, G., Molinari, J.F.: A molecular dynamics and finite elements study of nanoscale thermal contact conductance. Int. J. Heat Mass Transf. 59, 384–392 (2013)

    Article  CAS  Google Scholar 

  13. Müser, M.H., Dapp, W.B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T.A., et al.: Meeting the contact-mechanics challenge. Tribol. Lett. 65(4), 118 (2017)

    Article  Google Scholar 

  14. Afferrante, L., Carbone, G., Demelio, G.: Interacting and coalescing Hertzian asperities: a new multiasperity contact model. Wear. 278, 28–33 (2012)

    Article  Google Scholar 

  15. Menga, N.: Rough frictional contact of elastic thin layers: the effect of geometrical coupling. Int. J. Solids Struct. 164, 212–220 (2019)

    Article  Google Scholar 

  16. Bhushan, B.: Springer handbook of nanotechnology. Springer, Berlin (2004)

    Book  Google Scholar 

  17. Komvopoulos, K.: Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 17(4), 477–517 (2012)

    Article  Google Scholar 

  18. Ren, W.B., Chang, C., Chen, Y., Xue, S.J.: Investigation of the surface adhesion phenomena and mechanism of gold-plated contacts at superlow making/breaking speed. IEEE Trans. Compon. Packag. Technol. 5(6), 771–778 (2015)

    CAS  Google Scholar 

  19. Pau, M.: Estimation of real contact area in a wheel–rail system by means of ultrasonic waves. Tribol. Int. 36, 687–690 (2003)

    Article  Google Scholar 

  20. Ovcharenko, A., Halperin, G., Etsion, I., Varenberg, M.: A novel test rig for in situ and real time optical measurement of the contact area evolution during presliding of a spherical contact. Tribol. Lett. 23, 55–63 (2006)

    Article  Google Scholar 

  21. Gonzalez-Valadez, M., Dwyer-Joyce, R.S.: Asperity creep measured by the reflection of ultrasound at rough surface contact. J. Tribol. 021410, 1–8 (2009)

    Google Scholar 

  22. Swingler, J.: The resolution dependence of measured fractal characteristics for a real un-dismantled electrical contact interface. Wear. 268, 1178–1183 (2010)

    Article  CAS  Google Scholar 

  23. Thomas, G.B., McBride, J.W.: In-situ contact surface characterization in a mems ohmic switch under low current switching. Technologies. 6(2), 47 (2018)

    Article  Google Scholar 

  24. Megalingam, A.: Comparative contact analysis study of finite element method based deterministic, simplified multi-asperity and modified statistical contact models. J. Tri. 014503, 1–6 (2012)

    Google Scholar 

  25. Liu, H., McBride, J.W.: A finite-element-based contact resistance model for rough surfaces: applied to a bilayered au/MWCNT composite. IEEE Trans. Compon. Packag. Technol. 8(6), 919–926 (2018)

    CAS  Google Scholar 

  26. Zhang, F.K., Liu, J.H., Ding, X.Y., Wang, R.L.: Experimental and finite element analyses of contact behaviors between non-transparent rough surfaces. J. Mech. Phys. Solids. 126, 87–100 (2019)

    Article  CAS  Google Scholar 

  27. Jackson, R.L., Green, I.: A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol. Int. 39, 906–914 (2006)

    Article  CAS  Google Scholar 

  28. McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear. 107, 37–60 (1986)

    Article  Google Scholar 

  29. Greenwood, J.A.: A simplified elliptical model of rough surface contact. Wear. 261, 191–200 (2006)

    Article  CAS  Google Scholar 

  30. Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 112, 205–216 (1990)

    Article  Google Scholar 

  31. Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84(7), 3617–3624 (1998)

    Article  CAS  Google Scholar 

  32. Kogut, L., Komvopoulos, K.: Electrical contact resistance theory for conductive rough surfaces. J. Appl. Phys. 95(2), 576–585 (2004)

    Article  CAS  Google Scholar 

  33. Whitehouse, D.: Surfaces and their Measurement. Hermes Penton, London (2002)

    Google Scholar 

  34. Greenwood, J.A.: A unified theory of surface roughness. Proc. R. Soc. Lond. A. 393, 133–157 (1984)

    Article  Google Scholar 

  35. Whitehouse, D.J., Phillips, M.J.: Sampling in a two-dimensional plane. J. Phys. A. 18, 2465–2477 (1985)

    Article  Google Scholar 

  36. Yanagi, K., Hara, S., Endoh, T.: Summit identification of anisotropic surface texture and directionality assessment based on asperity tip geometry. Int. J. Mach. Tools Manuf. 41, 1863–1871 (2001)

    Article  Google Scholar 

  37. Tomanik, E.: Modelling of the asperity contact area on actual 3D surfaces. SAE Technical Paper. 01, 1864 (2005)

    Google Scholar 

  38. Kalin, M., Pogačnik, A., Etsion, I., Raeymaekers, B.: Comparing surface topography parameters of rough surfaces obtained with spectral moments and deterministic methods. Tribol. Int. 93, 137–141 (2016)

    Article  Google Scholar 

  39. Whitehouse, D.J.: Digital techniques. In: Thomas, T.R. (ed.) Rough surfaces. Longman, London (1982)

    Google Scholar 

  40. Whitehouse, D.J.: Handbook of surface metrology. Institute of Physics, Bristol (1994)

    Google Scholar 

  41. Poon, C.Y., Bhushan, B.: Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler. Wear. 190(1), 76–88 (1995)

    Article  CAS  Google Scholar 

  42. Jackson, R.L., Green, I.: On the modelling of elastic contact between rough surfaces. Tribol. Trans. 54, 300–314 (2011)

    Article  Google Scholar 

  43. Kalin, M., Pogačnik, A.: Criteria and properties of the asperity peaks on 3D engineering surfaces. Wear. 308, 95–104 (2013)

    Article  CAS  Google Scholar 

  44. Johnson, K.L.: Contact mechanics. Cambridge University Press, New York (1985)

    Book  Google Scholar 

  45. Hertz, H.: Über Die Berührung Fester Elastischer Körper. J. Reine Angew. Math. 92, 156 (1882)

    Article  Google Scholar 

  46. Ausloos, M., Berman, D.H.: A multivariate Weierstrass-Mandelbrot function. Proc. R. Soc. Lond. A. 400(1819), 331–350 (1985)

    Article  Google Scholar 

  47. Popov, V.L.: Contact mechanics and friction: Physical principles and applications. Springer, New York (2010)

    Book  Google Scholar 

  48. Waddad, Y., Magnier, V., Dufrénoy, P., De Saxcé, G.: A multiscale method for frictionless contact mechanics of rough surfaces. Tribol. Int. 96, 109–121 (2016)

    Article  Google Scholar 

  49. Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear. 35, 87–111 (1975)

    Article  Google Scholar 

  50. Carbone, G.: A slightly corrected Greenwood and Williamson model predicts asymptotic linearity between contact area and load. J. Mech. Phys. Solids. 57(7), 1093–1102 (2009)

    Article  Google Scholar 

  51. Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E. 026117, 1–12 (2004)

    Google Scholar 

  52. Yang, C., Persson, B.N.J.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. 024303, 1–4 (2008)

    Google Scholar 

  53. Carbone, G., Scaraggi, M., Tartaglino, U.: Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur. Phys. J. E. 30, 65–74 (2009)

    Article  CAS  Google Scholar 

  54. Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A new efficient numerical method for contact mechanics of rough surfaces. Int. J. Solids Struct. 49, 338–343 (2012)

    Article  Google Scholar 

  55. Yastrebov, V.A., Anciaux, G., Molinari, J.F.: From infinitesimal to full contact between rough surfaces: evolution of the contact area. Int. J. Solids Struct. 52, 83–102 (2015)

    Article  Google Scholar 

  56. Majumdar, A., Tien, C.L.: Fractal characterization and simulation of rough surfaces. Wear. 136, 313–327 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the kind support provided by The National Natural Science Foundation of China (Contract Number 51377029 and 51777039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanbin Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ren, W. Modeling of 3D Surface Morphologies for Predicting the Mechanical Contact Behaviors and Associated Electrical Contact Resistance. Tribol Lett 69, 20 (2021). https://doi.org/10.1007/s11249-020-01392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01392-9

Keywords

Navigation