Skip to main content

Advertisement

Log in

Spatial and territorial developments for life cycle assessment applied to urban mobility—case study on Lyon area in France

  • MODERN INDIVIDUAL MOBILITY
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The environmental assessment of urban mobility, defined as the movement of people in an urban area, exceeds the scope of transportation life cycle assessment (LCA) with spatial, territorial and even social considerations. The objective of this study is to develop an original interdisciplinary method based on LCA coupled with a land use and transport interaction (LUTI) model to better consider spatial and territorial dimensions in an environmental assessment of urban mobility.

Methods

Spatial and territorial issues emerge in all LCA stages for urban mobility, and this study illustrates them with an application on the Lyon urban area. To consider most individual daily trips, the geographical boundary is related to the area of influence of the city and the functional boundary includes all transportation modes, with motorized, public and non-motorized transports. The life cycle inventories (LCIs) combined EcoInvent 3.2 inventories with a specific LUTI model, named SIMBAD, local mobility surveys and an emissions and consumptions model (COPERT5). These refinements allow a spatial environmental impacts assessment of urban mobility, expressed per inhabitant per day, at different residential locations and open opportunities to develop precise assessment methods for local air pollutants with detailed description on both population and pollution concentrations.

Results and discussion

At territorial scale, this study highlights the major contribution to environmental impacts from private cars (around 90%) and the relevance to consider fuel, vehicle, and infrastructure life cycles in a mobility assessment. Spatial interpretations show important variability in function of residential locations and urban form characteristics related to different mobility behaviours, distance travelled and transport technologies used. Through the proposed assessment method for local air pollution impacts on human health, hotspots are revealed in the urban area, especially in the urban centre or along main road axes. In order to test our methodology and open discussions on mobility solutions, two contrasted scenarios are explored on compact city and vehicle electrification both presenting impact transfers between global indicators or with the air pollution exposure indicator.

Conclusions

Urban mobility and its related environmental burden are not only related to technological choices but are also related to spatial characteristics and territorial context. The combination of urban and spatial tools and data, such as LUTI model, with the LCA methodology improves the local representativeness of environmental assessment of mobility and enlarges the ranges of analysis and perspective. Nonetheless, improvements remain to be made in relation to ongoing developments on spatialized and territorial LCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aissani L (2008) Intégration des paramètres spatio-temporels et des risques d’accident à l’Analyse du Cycle de Vie : Application à la filière hydrogène énergie et à la filière essence. Phdthesis, Ecole Nationale Supérieure des Mines de Saint-Etienne

    Google Scholar 

  • Albertí J, Roca M, Brodhag C, Fullana-i-Palmer P (2019) Allocation and system boundary in life cycle assessments of cities. Habitat International 83:41–54. https://doi.org/10.1016/j.habitatint.2018.11.003

    Article  Google Scholar 

  • André M, Joumard R, Vidon R et al (2006) Real-world European driving cycles, for measuring pollutant emissions from high- and low-powered cars. Atmos Environ 40:5944–5953. https://doi.org/10.1016/j.atmosenv.2005.12.057

    Article  CAS  Google Scholar 

  • André M, Pasquier A, Carteret M (2018) Experimental determination of the geographical variations in vehicle fleet composition and consequences for assessing low-emission zones. Transportation Research Part D: Transport and Environment 65:750–760. https://doi.org/10.1016/j.trd.2018.10.005

    Article  Google Scholar 

  • Azapagic A, Pettit C, Sinclair P (2007) A life cycle methodology for mapping the flows of pollutants in the urban environment. Clean Technol Environ Policy 9:199–214. https://doi.org/10.1007/s10098-007-0092-9

    Article  CAS  Google Scholar 

  • Baitz M, Albrecht S, Brauner E et al (2013) LCA’s theory and practice: like ebony and ivory living in perfect harmony? Int J Life Cycle Assess 18:5–13. https://doi.org/10.1007/s11367-012-0476-x

    Article  Google Scholar 

  • Banister D (2008) The sustainable mobility paradigm. Transp Policy 15:73–80. https://doi.org/10.1016/j.tranpol.2007.10.005

    Article  Google Scholar 

  • Bauer C, Hofer J, Althaus H-J et al (2015) The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Appl Energy 157:871–883. https://doi.org/10.1016/j.apenergy.2015.01.019

    Article  Google Scholar 

  • Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108. https://doi.org/10.1016/j.atmosenv.2012.11.009

    Article  CAS  Google Scholar 

  • Boulay A-M, Bare J, Benini L et al (2018) The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23:368–378. https://doi.org/10.1007/s11367-017-1333-8

    Article  Google Scholar 

  • Brown Weiss E (2011) The Evolution of International Environmental Law. Georgetown Law Faculty Publications and Other Works

  • Bulle C, Margni M, Patouillard L et al (2019) IMPACT World+: a globally regionalized life cycle impact assessment method. Int J Life Cycle Assess 24:1653–1674. https://doi.org/10.1007/s11367-019-01583-0

    Article  CAS  Google Scholar 

  • Cervero R, Kockelman K (1997) Travel demand and the 3Ds: density, diversity, and design. Transport Research Part D: Transport and Environment 2:199–219

    Article  Google Scholar 

  • Chester M (2008) Life-cycle environmental inventory of passenger transportation in the United States. Institute of Transportation Studies

  • Chester M, Horvath A (2009) Environmental assessment of passenger transportation should include infrastructure and supply chains. Environ Res Lett 4:024008. https://doi.org/10.1088/1748-9326/4/2/024008

    Article  CAS  Google Scholar 

  • Chester M, Horvath A, Madanat S (2010) Comparison of life-cycle energy and emissions footprints of passenger transportation in metropolitan regions. Atmos Environ 44:1071–1079. https://doi.org/10.1016/j.atmosenv.2009.12.012

    Article  CAS  Google Scholar 

  • Cortinovis J, Moreto F, Yahyaoui A et al (2006) Élaboration d’un cadastre d’émissions interrégional pour la plate-forme de modélisation de prévisions cartographiques ESMERALDA Elaboration of an interregional emissions inventory for the modelling platform of cartographic previsions ESMERALDA. 20

  • de Bortoli A, Feraille A, Leurent F (2017) Life Cycle Assessment to support decision-making in transportation planning : a case of French Bus Rapid Transit. Washington DC, USA

  • Del Duce A, Gauch M, Althaus H-J (2014) Electric passenger car transport and passenger car life cycle inventories in ecoinvent version 3. The International Journal of Life Cycle Assessment. https://doi.org/10.1007/s11367-014-0792-4

    Article  Google Scholar 

  • Del Pero F, Delogu M, Pierini M, Bonaffini D (2015) Life Cycle Assessment of a heavy metro train. Journal of Cleaner Production 87:787–799. https://doi.org/10.1016/j.jclepro.2014.10.023

    Article  Google Scholar 

  • Dupuy G (1999) Les territoires de l’automobile. Economica Anthropos

  • EEA (2018) National emissions reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism

  • EEA (2014) Noise in Europe 2014

  • Eichlseder H, Hausberger S, Rexeis M et al (2009) Emission Factors from the Model PHEM for the HBEFA Version 3. Graz University of Technology

  • Ekvall T, Azapagic A, Finnveden G et al (2016) Attributional and consequential LCA in the ILCD handbook. Int J Life Cycle Assess 21:293–296. https://doi.org/10.1007/s11367-015-1026-0

    Article  Google Scholar 

  • Enault C (2003) Vitesse, accessibilité et étalement urbain; analyse et application à l’aire urbaine dijonnaise. Université de Bourgogne

  • Eriksson M, Ahlgren S (2013) LCAs of petrol and diesel. S wedish University of Agricultural Science, SLU

    Google Scholar 

  • European Commission/Joint Research Centre (2011) International reference life cycle data system (ILCD) handbook: general guide for life cycle assessment: provisions and action steps. Publications Office, Luxembourg

    Google Scholar 

  • Ewing R, Cervero R (2001) Travel and the built environment: a synthesis. Transportation Research Record: Journal of the Transportation Research Board 87–114

  • Ewing R, Cervero R (2010) Travel and the built environment: a meta-analysis. Journal of the American Planning Association 76:265–294. https://doi.org/10.1080/01944361003766766

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T et al (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21. https://doi.org/10.1016/j.jenvman.2009.06.018

    Article  Google Scholar 

  • François C (2019) Évaluation environnementale stratégique de la mobilité quotidienne des personnes d’une aire urbaine : couplage entre Modèle Transport-Urbanisme et Analyse de Cycle de Vie. PhD Thesis, Lyon

  • François C, Gondran N, Nicolas J-P, Parsons D (2017) Environmental assessment of urban mobility: combining life cycle assessment with land-use and transport interaction modelling—application to Lyon (France). Ecol Ind 72:597–604. https://doi.org/10.1016/j.ecolind.2016.07.014

    Article  CAS  Google Scholar 

  • García-Pérez S, Sierra-Pérez J, Boschmonart-Rives J (2018) Environmental assessment at the urban level combining LCA-GIS methodologies: a case study of energy retrofits in the Barcelona metropolitan area. Build Environ 134:191–204. https://doi.org/10.1016/j.buildenv.2018.01.041

    Article  Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M et al (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level 1:

  • Handy S (1996) Methodologies for exploring the link between urban form and travel behavior. Transport Research Part D: Transport and Environment 1:151–165

    Article  Google Scholar 

  • Hellmuth T, Classen T, Kim R, Kephalopoulos S (2012) Methodological guidance for estimating the burden of disease from environmental noise. World Health Organization

  • Hellweg S, Mila i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344:1109–1113. https://doi.org/10.1126/science.1248361

    Article  CAS  Google Scholar 

  • Héran F, Ravalet EPJ (2008) La consommation d’espace-temps des divers modes de déplacement en milieu urbain. Application au cas de l’île de France, PREDIT

    Google Scholar 

  • Hill J (2013) Life Cycle Analysis of Biofuels. Encyclopedia of Biodiversity (Second Edition). Academic Press, Waltham, pp 627–630

    Chapter  Google Scholar 

  • Hischier R, Weidema B, Althaus H-J et al (2010) Implementation of Life Cycle Impact Assessment Methods. EcoInvent

  • Hoffman AV, Felkner J (2002) The Historical Origins and Causes of Urban Decentralization in the United States. Joint Center for Housing Studies, Graduate School of Design [and] John F. Kennedy School of Government, Harvard University

  • Huijbregts MAJ, Schöpp W, Verkuijlen E et al (2000) Spatially explicit characterization of acidifying and eutrophying air pollution in life-cycle assessment. J Ind Ecol 4:75–92. https://doi.org/10.1162/108819800300106393

    Article  CAS  Google Scholar 

  • Humbert S, Marshall JD, Shaked S et al (2011) Intake fraction for particulate matter: recommendations for life cycle impact assessment. Environ Sci Technol 45:4808–4816. https://doi.org/10.1021/es103563z

    Article  CAS  Google Scholar 

  • Hunt JD, Kriger DS, Miller EJ (2005) Current operational urban land-use–transport modelling frameworks: a review. Transport Reviews 25:329–376. https://doi.org/10.1080/0144164052000336470

    Article  Google Scholar 

  • ICCT (2017) European vehicle market statistics: Pocketbook 2016/2017. The International Council on Clean Transportation

  • IEA (2019) World Energy Balances 2019

  • Ivanova D, Vita G, Steen-Olsen K et al (2017) Mapping the carbon footprint of EU regions. Environ Res Lett 12:054013. https://doi.org/10.1088/1748-9326/aa6da9

    Article  Google Scholar 

  • Jolliet O, Saadé-Sbeith M, Shaked S et al (2016) Environmental life cycle assessment. CRC Press, Taylor & Francis Group, Boca Raton

  • Jones J (2016) Spatial bias in LUTI models. Université catholique de Louvain

  • Karlsson CSJ, Miliutenko S, Björklund A et al (2017) Life cycle assessment in road infrastructure planning using spatial geological data. The International Journal of Life Cycle Assessment 22:1302–1317. https://doi.org/10.1007/s11367-016-1241-3

    Article  CAS  Google Scholar 

  • Kaufmann V, Bergman MM, Joye D (2004) Motility: mobility as capital. Int J Urban Reg Res 28:745–756

    Article  Google Scholar 

  • Kenworthy JR (2003) Transport energy use and greenhouse gases in urban passenger transport systems: a study of 84 global cities

  • Knibbs LD, Cole-Hunter T, Morawska L (2011) A review of commuter exposure to ultrafine particles and its health effects. Atmos Environ 45:2611–2622. https://doi.org/10.1016/j.atmosenv.2011.02.065

    Article  CAS  Google Scholar 

  • Krewitt W, Trukenmüller A, Bachmann TM, Heck T (2001) Country-specific damage factors for air pollutants. Int J LCA 6:199. https://doi.org/10.1007/BF02979375

    Article  CAS  Google Scholar 

  • Kumar P, Morawska L, Birmili W et al (2014) Ultrafine particles in cities. Environ Int 66:1–10. https://doi.org/10.1016/j.envint.2014.01.013

    Article  CAS  Google Scholar 

  • Laurent F (2015) Optimisation fonctionnelle et spatiale de scénarios de méthanisation centralisée selon une approche systémique territoriale couplée à l’analyse du cycle de vie. Université de Rennes 1

  • Le Féon S (2014) Evaluation environnementale des besoins de mobilité des grandes aires urbaines en France-Approche par Analyse de Cycle de Vie. Saint-Etienne, EMSE

    Google Scholar 

  • Le Féon S, Gondran N, Laforest V, Le Boulch D (2012) Global warming impact assessment of urban mobility using motivation trip perspective - a case study of Saint-Etienne, France. International Journal of Environmental Science and Engineering Research Vol 3(3):pp.86–101

  • Liu KF-R, Hung M-J, Yeh P-C, Kuo J-Y (2014) GIS-Based Regionalization of LCA. GEP 02:1–8. https://doi.org/10.4236/gep.2014.22001

    Article  Google Scholar 

  • Loiseau E, Aissani L, Le Féon S et al (2018) Territorial Life Cycle Assessment (LCA): What exactly is it about? A proposal towards using a common terminology and a research agenda. Journal of Cleaner Production 176:474–485. https://doi.org/10.1016/j.jclepro.2017.12.169

    Article  Google Scholar 

  • Loiseau E, Roux P, Junqua G et al (2013) Adapting the LCA framework to environmental assessment in land planning. Int J Life Cycle Assess 18:1533–1548. https://doi.org/10.1007/s11367-013-0588-y

    Article  Google Scholar 

  • Luz R, Hausberger S (2010) User Guide for the Model PHEM. Handbuch, Graz

    Google Scholar 

  • Ma H, Balthasar F, Tait N et al (2012) A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy Policy 44:160–173. https://doi.org/10.1016/j.enpol.2012.01.034

    Article  Google Scholar 

  • Marshall S, Banister D (eds) (2007) Land use and transport: European research towards integrated policies. Elsevier, Amsterdam London

    Google Scholar 

  • Menten F, Chèze B, Patouillard L, Bouvart F (2013) A review of LCA greenhouse gas emissions results for advanced biofuels: the use of meta-regression analysis. Renew Sustain Energy Rev 26:108–134. https://doi.org/10.1016/j.rser.2013.04.021

    Article  CAS  Google Scholar 

  • Milakis D, Cervero R, Van Wee B (2015) Stay local or go regional? Urban form effects on vehicle use at different spatial scales: A theoretical concept and its application to the San Francisco Bay Area. Journal of Transport and Land Use 8. https://doi.org/10.5198/jtlu.2015.557

  • Minx J, Baiocchi G, Wiedmann T et al (2013) Carbon footprints of cities and other human settlements in the UK. Environ Res Lett 8:035039. https://doi.org/10.1088/1748-9326/8/3/035039

    Article  CAS  Google Scholar 

  • Mirabella N, Allacker K, Sala S (2018) Current trends and limitations of life cycle assessment applied to the urban scale: critical analysis and review of selected literature. The International Journal of Life Cycle Assessment. https://doi.org/10.1007/s11367-018-1467-3

    Article  Google Scholar 

  • Moine A (2006) Le territoire comme un système complexe : un concept opératoire pour l’aménagement et la géographie. LEspace geographique Tome 35:115–132

    Article  Google Scholar 

  • Moreno EL, Murguía RO (2015) The City Prosperity Initiative: 2015 Global City Report. UN-Habitat

  • Mutel CL, Hellweg S (2009) Regionalized life cycle assessment: computational methodology and application to inventory databases. Environ Sci Technol 43:5797–5803. https://doi.org/10.1021/es803002j

    Article  CAS  Google Scholar 

  • Naess P (2012) Urban form and travel behavior: experience from a Nordic context. Journal of Transport and Land Use 5:21–45. https://doi.org/10.5198/jtlu.v5i2.314

    Article  Google Scholar 

  • Newman PWG, Kenworthy JR (1999) Sustainability and Cities: Overcoming Automobile Dependence. Island Press, Washington D, C., USA

    Google Scholar 

  • Nichols BG, Kockelman KM (2014) Life-cycle energy implications of different residential settings: recognizing buildings, travel, and public infrastructure. Energy Policy 68:232–242. https://doi.org/10.1016/j.enpol.2013.12.062

    Article  Google Scholar 

  • Nicolas J-P, Bonnel P, Cabrera J et al (2009) SImuler les MoBilités pour une Agglomération Durable. Laboratoire d’Économie des Transports

  • Nitschelm L, Aubin J, Corson MS et al (2016) Spatial differentiation in Life Cycle Assessment LCA applied to an agricultural territory: current practices and method development. Journal of Cleaner Production 112:2472–2484. https://doi.org/10.1016/j.jclepro.2015.09.138

    Article  Google Scholar 

  • Ntziachristos L, Samaras Z, Kouridis C, et al (2014) COPERT Guidebook 2014 : Exhaust emissions from road transport. Guidebook

  • Ntziachristos L, Samaras Z, Kouridis C, et al (2016) EMEP/EEA air pollutant emission inventory guidebook 2016 - Passenger cars, light commercial trucks, heavy-duty vehicles including buses and motor cycles. 153

  • O’Keeffe S, Majer S, Bezama A, Thrän D (2016) When considering no man is an island—assessing bioenergy systems in a regional and LCA context: a review. Int J Life Cycle Assess 21:885–902. https://doi.org/10.1007/s11367-016-1057-1

    Article  CAS  Google Scholar 

  • Ostrom E (2009) A polycentric approach for coping with climate change. World Bank

  • Patouillard L, Collet P, Tirado-Seco P, et al (2016) Prioritize regional data collection based on uncertainty analysis to enhance the quality of LCA results. LCA XVI undefined-undefined

  • Pérez-Soba M, Petit S, Jones L et al (2008) Land use functions — a multifunctionality approach to assess the impact of land use changes on land use sustainability. In: Helming K, Pérez-Soba M, Tabbush P (eds) Sustainability impact assessment of land use changes. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 375–404

    Chapter  Google Scholar 

  • Potting J, Hauschild M (1997) Part II: spatial differentiation in life-cycle assessment via the site-dependent characterisation of environmental impact from emissions. The International Journal of Life Cycle Assessment 2:209–216. https://doi.org/10.1007/BF02978417

    Article  Google Scholar 

  • Potting J, Schöpp W, Blok K, Hauschild M (1998) Site-dependent life-cycle impact assessment of acidification. J Ind Ecol 2:63–87. https://doi.org/10.1162/jiec.1998.2.2.63

    Article  CAS  Google Scholar 

  • Querini F, Benetto E (2015) Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies. Environ Sci Technol 49:1744–1751. https://doi.org/10.1021/es5060868

    Article  CAS  Google Scholar 

  • Reed MS (2008) Stakeholder participation for environmental management: a literature review. Biol Cons 141:2417–2431. https://doi.org/10.1016/j.biocon.2008.07.014

    Article  Google Scholar 

  • Saner D, Beretta C, Jäggi B et al (2016) FoodPrints of households. Int J Life Cycle Assess 21:654–663. https://doi.org/10.1007/s11367-015-0924-5

    Article  CAS  Google Scholar 

  • Santos JM, Flintsch G, Ferreira A (2017) Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability. Resources Conservation and Recycling 15–31

  • Saujot M, de Lapparent M, Arnaud E, Prados E (2015) To make LUTI models operational tools for planning. Transport and Mobility Laboratory - Ecole Polytechnique Fédérale de Lausanne

  • Schafer A, Victor DG (2000) The future mobility of the world population. Transportation Research Part A: Policy and Practice 34:171–205. https://doi.org/10.1016/S0965-8564(98)00071-8

    Article  Google Scholar 

  • Schwanen T, Dijst M, Dieleman F (2004) Policies for urban form and their impact on travel: the Netherlands experience. Urban Studies 41:579–603. https://doi.org/10.1080/0042098042000178690

    Article  Google Scholar 

  • Servant L (1996) L’Automobile dans la ville: l’envers d’un indéniable succès / The automobile in the city: the flip side of a genuine success story. Cahier de l’IAURIF 7–21

  • Shaheen SA, Chan ND, Gaynor T (2016) Casual carpooling in the San Francisco Bay Area: understanding user characteristics, behaviors, and motivations. Transp Policy 51:165–173. https://doi.org/10.1016/j.tranpol.2016.01.003

    Article  Google Scholar 

  • Smit R (2006) An examination of congestion in road traffic emission models and their application to urban road networks. 22

  • Stead D, Marshall S (2001) The relationships between urban form and travel patterns. An international review and evaluation. European Journal of Transport and Infrastructure Research 1:113–141

    Google Scholar 

  • Tagliaferri C, Evangelisti S, Acconcia F et al (2016) Life cycle assessment of future electric and hybrid vehicles: a cradle-to-grave systems engineering approach. Chem Eng Res Des 112:298–309. https://doi.org/10.1016/j.cherd.2016.07.003

    Article  CAS  Google Scholar 

  • UNCED (1992) Agenda 21

  • Wegener M, Fürst F (2004) Land-use transport interaction: state of the art. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1434678

    Article  Google Scholar 

  • Wernet G, Bauer C, Steubing B et al (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21:1218–1230. https://doi.org/10.1007/s11367-016-1087-8

    Article  Google Scholar 

  • Wiel M (1999) Mobilité, système d’interactions sociales et dynamiques territoriales. Espace, populations, sociétés 17:187–194. https://doi.org/10.3406/espos.1999.1884

    Article  Google Scholar 

  • Wilson A (2010) The general urban model: retrospect and prospect. Papers in Regional Science 89:27–42. https://doi.org/10.1111/j.1435-5957.2010.00282.x

    Article  Google Scholar 

  • Zahavi Y, Ryan JM (1980) Stability of travel components over time. Transp Res Rec 750:19–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrille François.

Additional information

Communicated by Wulf-Peter Schmidt

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

François, C., Gondran, N. & Nicolas, JP. Spatial and territorial developments for life cycle assessment applied to urban mobility—case study on Lyon area in France. Int J Life Cycle Assess 26, 543–560 (2021). https://doi.org/10.1007/s11367-020-01861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-020-01861-2

Keywords

Navigation