Skip to main content
Log in

Tunable phase control of rotary photon drag by superposition of three probes coherence in atomic medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We use the superposition of three probes fields to modify the rotatory photon drag by strength and phases of the applied fields. Subluminal propagation is tuned to superluminal propagation with strength, phases of control field and superposition states. We measure a group index of \(\pm \,2000\) with phases of the control fields and superposition states. The group velocity is modified to \(\pm \,1.5\times 10^5\) m/s in the medium. We investigate the rotary photon drag in the region positive and negative group velocity regions. Significant tunability of rotary photon drag is reported with the phases and strength of applied fields and superposition states. We note a maximum of \(\pm \,5\) micro-radians rotary photon drag in the medium. The significant tunability of photon drag from positive to negative values in micro-radians shows potential application in the spacial modes imaging coding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Pauli, Theory of Relativity (Pergamon, New York, 1958)

    MATH  Google Scholar 

  2. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1984)

    Google Scholar 

  3. A.J. Fresnel, Ann. Chim. Phys. 9, 57 (1818)

    Google Scholar 

  4. H. Fizeau, C. R. Acad. Sci. (Paris) 33, 349 (1851)

    Google Scholar 

  5. H. Fizeau, Ann. De chimieet de Phys. 57, 385 (1859)

    Google Scholar 

  6. R.V. Jones, Proc. R. Soc. Lond. Ser. 328, 337 (1972)

    ADS  Google Scholar 

  7. S.F. Arnold, G. Gibson, R.W. Boyd, M.J. Padgett, Science 333, 65 (2011)

    Article  ADS  Google Scholar 

  8. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  9. D. Sankar, Y.V. Rostovtsev, Phys. Rev. A 86, 013806 (2012)

    Article  ADS  Google Scholar 

  10. A.B. Matsko et al., Phys. Rev. Lett. 86, 1767 (2011)

    Google Scholar 

  11. Y.U. Rostovtsev et al., Phys. Rev. Lett. 97, 113001 (2006)

    Article  ADS  Google Scholar 

  12. H.R. Bilger, A.T. Zavodny, Phys. Rev. A 5, 591 (1972)

    Article  ADS  Google Scholar 

  13. G.A. Sanders, S. Ezekiel, J. Opt. Soc. Am. B 5, 674 (1988)

    Article  ADS  Google Scholar 

  14. E.J. Post, Rev. Mod. Phys. 39, 475 (1967)

    Article  ADS  Google Scholar 

  15. G.E. Stedman, Rep. Prog. Phys. 60, 615 (1997)

    Article  ADS  Google Scholar 

  16. A.G. Klein, G.I. Opat, A. Cimmino, A. Zeilinger, W. Treimer, R. Gahler, Phys. Rev. Lett. 46, 1551 (1981)

    Article  ADS  Google Scholar 

  17. U. Leonhardt, P. Piwnicki, Phys. Rev. Lett. 84, 822 (2000)

    Article  ADS  Google Scholar 

  18. P.-C. Kuan, C. Huang, W.S. Chan, S. Kosen, S.-Y. Lan, Large Fizeau’s light-dragging effect in a moving electromagnetically induced transparent medium. Nat. Commun. 7, 13030 (2016)

    Article  ADS  Google Scholar 

  19. S. Franke-Arnold, G. Gibson, R.W. Boyd, M.J. Padgett, Rotary photon drag enhanced by a slow-light medium. Science 333, 65 (2011)

    Article  ADS  Google Scholar 

  20. D. Strekalov, A.B. Matsko, N. Yu, L. Maleki, Observation of light dragging in a rubidium vapor cell. Phys. Rev. Lett. 93, 023601 (2004)

    Article  ADS  Google Scholar 

  21. A. Safari, I. De Leon, M. Mirhosseini, O.S. MaganaLoaiza, R.W. Boyd, Light-drag enhancement by a highly dispersive rubidium vapor. Phys. Rev. Lett. 116, 013601 (2016)

    Article  ADS  Google Scholar 

  22. A.B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G.R. Welch, A.S. Zibrov, M.O. Scully, Adv. At. Mol. Opt. Phys. 46, 191 (2001)

    Article  ADS  Google Scholar 

  23. R.W. Boyd, D.J. Gauther, Prog. Opt. 43, 497 (2002)

    Article  ADS  Google Scholar 

  24. U. Leonhardt, P. Piwnicki, Phys. Rev. Lett. 84, 822 (2000)

    Article  ADS  Google Scholar 

  25. E. Arimondo, Prog. Opt. 35, 257 (1996)

    Article  ADS  Google Scholar 

  26. S.E. Harris, Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  27. J.P. Marangos, J. Mod. Opt. 45, 471 (1998)

    Article  ADS  Google Scholar 

  28. R.V. Jones, Proc. R. Soc. Lond. A Math. Phys. Sci. 349, 423 (1976)

    ADS  Google Scholar 

  29. M.J. Padgett, Equivalent geometric transformations for spin and orbital angular momentum of light. J. Mod. Opt. 54, 487–491 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. N. Khan, B.A. Bacha, A. Iqbal, A.U. Rahman, A. Afaq, Phys. Rev. A 96, 013848 (2017)

    Article  ADS  Google Scholar 

  31. A. Iqbal, N. Khan, B.A. Bacha, A.U. Rahman, A. Ahmad, Phys. Lett. A 381, 3134 (2017)

    Article  ADS  Google Scholar 

  32. A.S. Franke et al., Science 333, 65 (2011)

    Article  ADS  Google Scholar 

  33. H. Rahman et al., Laser Phys. 24, 115404 (2014)

    Article  ADS  Google Scholar 

  34. A. Safari, I.D. Leon, M. Mirhosseini, O.S. Magaña- Loaiza, R.W. Boyd, Light-drag enhancement by a highly dispersive rubidium vapor. Phys. Rev. Lett. 116(1), 013601 (2016)

    Article  ADS  Google Scholar 

  35. P.-C. Kuan, C. Huang, W.S. Chan, S. Kosen, S.-Y. Lan, Nat. Commun. 7, 13030 (2016)

    Article  ADS  Google Scholar 

  36. I. Carusotto, M. Artoni, G.C. La Rocca, F. Bassani, Phys. Rev. A 68, 063819 (2003)

    Article  ADS  Google Scholar 

  37. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature (London) 397, 594 (1999)

    Article  ADS  Google Scholar 

  38. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, ibid. 409, 490 (2001)

  39. M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, M.O. Scully, Phys. Rev. Lett. 82, 5229 (1999)

    Article  ADS  Google Scholar 

  40. D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, ibid. 83, 1767 (1999)

  41. L.J. Wang, A. Kuzmich, A. Dogariu, Nature (London) 406, 277 (2000)

    Article  ADS  Google Scholar 

  42. A. Dogariu, A. Kuzmich, L.J. Wang, Phys. Rev. A 63, 053806 (2001)

    Article  ADS  Google Scholar 

  43. G.S. Agarwal, T.N. Dey, S. Menon, Phys. Rev. A 64, 053809 (2001)

    Article  ADS  Google Scholar 

  44. E.E. Mikhailov, V.A. Sautenkov, Y.V. Rostovtsev, G.R. Welch, J. Opt. Soc. Am. B 21, 425 (2004)

    Article  ADS  Google Scholar 

  45. Q. Sun, Y.V. Rostovtsev, J.P. Dowling, M.O. Scully, M.S. Zubairy, Phys. Rev. A 72, 031802 (2005)

    Article  ADS  Google Scholar 

  46. O. Kocharovskaya, Y. Rostovtsev, M.O. Scully, Phys. Rev. Lett. 86, 628 (2001)

    Article  ADS  Google Scholar 

  47. M. Fleischhauer, M.D. Lukin, Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  48. M. Fleischhauer, M.D. Lukin, Phys. Rev. A 65, 022314 (2002)

    Article  ADS  Google Scholar 

  49. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, ibid. 86, 783 (2001)

  50. A.B. Matsko, Y.V. Rostovtsev, O. Kocharovskaya, A.S. Zibrov, M.O. Scully, Phys. Rev. A 64, 043809 (2001)

    Article  ADS  Google Scholar 

  51. C. Mewes, M. Fleischhauer, ibid. 66, 033820 (2002)

  52. T.N. Dey, G.S. Agarwal, ibid. 67, 033813 (2003)

  53. M.S. Shahriar, G.S. Pati, R. Tripathi, V. Gopal, M. Messall, K. Salit, Phys. Rev. A 75, 053807 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Ahmad.

Appendices

Appendix I

$$\begin{aligned} \dot{{\widetilde{\rho }}}_{24}= & {} A_1{\widetilde{\rho }}_{24}+\frac{i}{2}\Omega _{1p}{\widetilde{\rho }}_{21}+\frac{i}{2}\Omega _{2p}({\widetilde{\rho }}_{22}-{{\widetilde{\rho }}}_{44}) +\frac{i}{2}\Omega _{3p}{{\widetilde{\rho }}}_{23}+\frac{i}{2}\Omega ^*_c{{\widetilde{\rho }}}_{25},\\ \dot{{\widetilde{\rho }}}_{25}= & {} A_2{\widetilde{\rho }}_{25}+\frac{i}{2}\Omega _{1c}{\widetilde{\rho }}_{21}+ \frac{i}{2}\Omega _{2c}{\widetilde{\rho }}_{23}+\frac{i}{2}\Omega _{c}{\widetilde{\rho }}_{24}-\frac{i}{2}\Omega _{2p}{\widetilde{\rho }}_{45},\\ \dot{{\widetilde{\rho }}}_{21}= & {} -A_3{\widetilde{\rho }}_{21}+\frac{i}{2}\Omega ^*_{1p}{\widetilde{\rho }}_{24}+ \frac{i}{2}\Omega ^*_{1c}{\widetilde{\rho }}_{25}-\frac{i}{2}\Omega _{2p}{\widetilde{\rho }}_{41},\\ \dot{{\widetilde{\rho }}}_{23}= & {} A_4{\widetilde{\rho }}_{23}+\frac{i}{2}\Omega ^*_{3p}{\widetilde{\rho }}_{24}+ \frac{i}{2}\Omega ^*_{2c}{\widetilde{\rho }}_{25}-\frac{i}{2}\Omega _{2p}{\widetilde{\rho }}_{43},\\ \dot{{\widetilde{\rho }}}_{14}= & {} B_1{\widetilde{\rho }}_{14}+\frac{i}{2}\Omega _{1p}({\widetilde{\rho }}_{11}-{\widetilde{\rho }}_{44})+ \frac{i}{2}\Omega _{2p}{\widetilde{\rho }}_{12}+\frac{i}{2}\Omega _{3p}{\widetilde{\rho }}_{13}-\frac{i}{2}\Omega _{1c}{\widetilde{\rho }}_{54}+ \frac{i}{2}\Omega ^*_c{\widetilde{\rho }}_{15},\\ \dot{{\widetilde{\rho }}}_{54}= & {} -B_2{\widetilde{\rho }}_{54}+\frac{i}{2}\Omega _{1p}{\widetilde{\rho }}_{51}+\frac{i}{2}\Omega _{2p}{\widetilde{\rho }}_{52}+ \frac{i}{2}\Omega _{3p}{\widetilde{\rho }}_{53}-\frac{i}{2}\Omega ^*_{1c}{\widetilde{\rho }}_{14}-\frac{i}{2}\Omega ^*_{2c}{\widetilde{\rho }}_{34}+ \frac{i}{2}\Omega ^*_c({\widetilde{\rho }}_{55}-{\widetilde{\rho }}_{44}),\\ \dot{{\widetilde{\rho }}}_{15}= & {} B_3{\widetilde{\rho }}_{15}+\frac{i}{2}\Omega _{1c}({\widetilde{\rho }}_{11}-{\widetilde{\rho }}_{55})+ \frac{i}{2}\Omega _{2c}{\widetilde{\rho }}_{13}+\frac{i}{2}\Omega _c{\widetilde{\rho }}_{14}-\frac{i}{2}\Omega _{1p}{\widetilde{\rho }}_{45},\\ \dot{{\widetilde{\rho }}}_{13}= & {} B_4{\widetilde{\rho }}_{13}+\frac{i}{2}\Omega ^*_{3p}{\widetilde{\rho }}_{14}+\frac{i}{2}\Omega ^*_{2c}{\widetilde{\rho }}_{15}- \frac{i}{2}\Omega _{1p}{\widetilde{\rho }}_{43}-\frac{i}{2}\Omega _{1c}{\widetilde{\rho }}_{53},\\ \dot{{\widetilde{\rho }}}_{53}= & {} -B_5{\widetilde{\rho }}_{53}+\frac{i}{2}\Omega ^*_{3p}{\widetilde{\rho }}_{54}+ \frac{i}{2}\Omega ^*_{2c}({\widetilde{\rho }}_{55}-{\widetilde{\rho }}_{33})-\frac{i}{2}\Omega ^*_{1c}{\widetilde{\rho }}_{13}- \frac{i}{2}\Omega ^*_c{\widetilde{\rho }}_{43},\\ \dot{{\widetilde{\rho }}}_{34}= & {} B_6{\widetilde{\rho }}_{34}+\frac{i}{2}\Omega _{1p}{\widetilde{\rho }}_{31}+ \frac{i}{2}\Omega _{3p}({\widetilde{\rho }}_{33}-{\widetilde{\rho }}_{44})-\frac{i}{2}\Omega _{2c}{\widetilde{\rho }}_{54}+ \frac{i}{2}\Omega _{2p}{\widetilde{\rho }}_{32}+\frac{i}{2}\Omega ^*_c{\widetilde{\rho }}_{35}. \end{aligned}$$

Appendix II

$$\begin{aligned} A_1= & {} i\Delta _{2p}-\frac{1}{2}(\gamma _{42}+\gamma _{52}+\gamma _{54}),~ A_2=i(\Delta _{2p}+\Delta _c)-\frac{1}{2}(\gamma _{42}+\gamma _{52}),\\ A_3= & {} -(i(\Delta _{1p}-\Delta _{2p})+\frac{1}{2}(\gamma _{41}+\gamma _{42}+\gamma _{51}+\gamma _{52})),\\ A_4= & {} i(\Delta _{2p}+\Delta _c-\Delta _{2c})-\frac{1}{2}(\gamma _{42}+\gamma _{43}+\gamma _{52}+\gamma _{53}),\\ B_1= & {} i\Delta _{1p}-\frac{1}{2}(\gamma _{41}+\gamma _{51}+\gamma _{54}), ~ B_2=-(i\Delta _c+\frac{1}{2}\gamma _{54}),~ B_3=i\Delta _{1c}-\frac{1}{2}(\gamma _{41}+\gamma _{51}),\\ B_4= & {} i(\Delta _{1c}-\Delta _{2c})-\frac{1}{2}(\gamma _{41}+\gamma _{43}+\gamma _{51}+\gamma _{53}),~ B_5=-i\Delta _{2c}-\frac{1}{2}(\gamma _{43}+\gamma _{53})\\ B_6= & {} i\Delta _{3p}-\frac{1}{2}(\gamma _{43}+\gamma _{53}+\gamma _{54}),\\ Q_1= & {} \frac{1}{16}B_2B_4e^{-2i\varphi }\left( 4B_1B_3+|\Omega ^2|\right) \left( 4B_5B_6e^{2i\varphi }-e^{-2i\varphi _2}|\Omega _2^2|\right) ,\\ Q_2= & {} \frac{1}{16}(|\Omega _1^2|\\&\times \left( B_2B_6|\Omega ^2|+B_3(4B_4B_5B_6-B_4e^{-2i(\varphi -\varphi _2)}|\Omega ^2|+B_6|\Omega _1^2|))+B_1B_3(B_2B_6|\Omega _1^2|+B_4B_5|\Omega _2^2|)\right) ,\\ Q_3= & {} \frac{1}{16}e^{-2i\varphi }\\&\times \left( -B_1B_2e^{4i\varphi _2}|\Omega ^2|+B_5B_6e^{2i(\varphi +\varphi _2)}(4B_1B_2|\Omega _1^2|)+e^{2i\varphi }(B_4B_5|\Omega ^2|+B_1B_3|\Omega _1^2|)\right) |\Omega _2^2|,\\ Q_4= & {} \frac{1}{16}e^{-i(\varphi -2\varphi _2)}\left( B_1B_5e^{i\varphi }|\Omega _2^4|-i|\Omega ^2||\Omega _1^2||\Omega _2^2|\cos (\varphi -\frac{3\varphi _2}{2})\sin (\frac{\varphi _2}{2})\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, F., Ahmad, S., Arif, S.M. et al. Tunable phase control of rotary photon drag by superposition of three probes coherence in atomic medium. Eur. Phys. J. Plus 136, 110 (2021). https://doi.org/10.1140/epjp/s13360-021-01077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01077-9

Navigation