Skip to main content
Log in

Magnetism of dimer ensemble with random exchange energy

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present the study of magnetism of dimer ensemble deposited on a non-magnetic conducting substrate. The dimers consist of ions with spin 1/2 and have a random size. The magnetic ions are coupled by RKKY-interaction with random energy value. We consider two interaction models. The first assumes that dimer coupling energy has a Gaussian distribution, and the second model is based on a log-normal distribution of dimer size. The magnetization and susceptibility are evaluated from the exact solution for dimer energy and eigenstates. We show that the average exchange value and its dispersion have a strong effect on the system properties. The magnetic saturation exists under strong magnetic fields. High-temperature leads to the Curie’s law for susceptibility. The saturation magnetization of system with ferromagnetic coupling lowers, while the antiferromagnetic dimer ensemble can have non-zero magnetization under the strong magnetic field. It is determined by the dispersion of exchange energy.

GraphicAbstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.].

References

  1. M.I. Katsnelson, VYu. Irkhin, L. Chioncel et al., Rev. Mod. Phys. 80, 315 (2008)

    Article  ADS  Google Scholar 

  2. V.A. Ivanov, Bull. Russ. Acad. Sci. Phys. 71, 1610 (2007)

    Article  Google Scholar 

  3. S.K.S. Patel, K. Dewangan, S.K. Srivastav et al., Curr. Appl. Phys. 14, 905 (2014)

    Article  ADS  Google Scholar 

  4. A.A. Katanin, VYu. Irkhin, Phys. Usp. 50, 613 (2007)

    Article  ADS  Google Scholar 

  5. K. Kindo, M. Motokawa, F.R. de Boer, High Magnetic Fields (World Scientific, Singapore, 2006), p. 125

    Book  Google Scholar 

  6. S.F. Edwards, P.W. Anderson, J. Phys. F Metal Phys. 5, 965 (1975)

    Article  ADS  Google Scholar 

  7. H.T. Diep, Frustrated Spin Systems (World Scientific, Singapore, 2013), p. 644

    Book  Google Scholar 

  8. L.N. Bulaevskii, Sov. Phys. JETP 16, 685 (1963)

    ADS  Google Scholar 

  9. J.C. Bonner, H.W.J. Blöte, J.W. Bray et al., J. Appl. Phys. 50, 1810 (1979)

    Article  ADS  Google Scholar 

  10. M. Takigawa, H. Kodama, M. Horvatic et al., J. Phys. Conf. Ser. 51, 23 (2006)

    Article  ADS  Google Scholar 

  11. F. Lipps, A.H. Arkenbout, A. Polyakov et al., Low Temp. Phys. 43, 1298 (2018)

    Article  ADS  Google Scholar 

  12. D. Urushihara, S. Kawaguchi, K. Fukuda et al., IUCrJ 7, 656 (2020)

    Article  Google Scholar 

  13. A. Vasiliev, O. Volkova, E. Zvereva et al., npj Quantum Mater. 3, 18 (2018)

  14. Y.-H. Chen, H.-S. Tao, D.-X. Yao et al., Phys. Rev. Lett. 108, 246402 (2012)

    Article  ADS  Google Scholar 

  15. X.-L. Zhang, L.-F. Liu, W.-M. Liu, Sci. Rep. 3, 2908 (2013)

    Article  Google Scholar 

  16. A. Friedman, J.T. Robinson, K. Perkins et al., Appl. Phys. Lett. 99, 022108 (2011)

    Article  ADS  Google Scholar 

  17. Y. Zhou, B. Han, Zh-M Liao et al., Appl. Phys. Lett. 98, 222502 (2011)

    Article  ADS  Google Scholar 

  18. R. Zhao, R. Jayasingha, A. Sherehiy et al., J. Phys. Chem. C 119, 20150 (2015)

    Article  Google Scholar 

  19. R. Zhao, T. Afaneh, R. Dharmasena et al., Phys. B 490, 21 (2016)

    Article  ADS  Google Scholar 

  20. D.A. Estyunin, I.I. Klimovskikh, VYu. Voroshnin et al., J. Exp. Theor. Phys. 125, 762 (2017)

    Article  ADS  Google Scholar 

  21. G.A. Rudakov, K.B. Tsiberkin, R.S. Ponomarev et al., J. Magn. Magn. Mater. 472, 34 (2019)

    Article  ADS  Google Scholar 

  22. A.V. Sosunov, K.B. Tsiberkin, V.K. Henner, Bulletin of Perm University. Physics 2, 63 (2019)

    Google Scholar 

  23. S. Saremi, Phys. Rev. B 76, 184430 (2007)

    Article  ADS  Google Scholar 

  24. E. Kogan, Graphene 2, 8 (2012)

    Article  Google Scholar 

  25. A.N. Rudenko, F.J. Keil, M.I. Katsnelson et al., Phys. Rev. B 88, 081405(R) (2013)

    Article  ADS  Google Scholar 

  26. V.V. Mazurenko, A.N. Rudenko, S.A. Nikolaev et al., Phys. Rev. B 94, 214411 (2016)

    Article  ADS  Google Scholar 

  27. D. Lee, I. Nekrashevich, H.J. Lee et al., Chem. Mater. 29, 3873 (2017)

    Article  Google Scholar 

  28. S. Sarkar, A. Mondai, N. Giri et al., Phys. Chem. Chem. Phys. 21, 260 (2019)

    Article  Google Scholar 

  29. V.I. Yukalov, V.K. Henner, T.S. Belozerova, Laser Phys. Lett. 13, 016001 (2016a)

    Article  ADS  Google Scholar 

  30. V.I. Yukalov, V.K. Henner, T.S. Belozerova et al., J. Supercond. Nov. Magn. 29, 721 (2016b)

    Article  Google Scholar 

  31. A.A. Dzhurakhalov, F.M. Peeters, Carbon 49, 3258 (2011)

    Article  Google Scholar 

  32. J .D. Murray, Asymptotic Analysis (Springer, New York, 1984), p. 165

    Book  Google Scholar 

Download references

Acknowledgements

We are thankful the anonymous referees for the valuable comments permit to improve the initial manuscript. The research is supported by the Council for Grants of the President of the Russian Federation, contract MK-1422.2020.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Tsiberkin.

Ethics declarations

KT formulated the problem, realized the evaluation of eigenstates of the dimer, magnetization calculation for the system with log-normal distribution of dimer size and suppose the Laplace’s method using for the magnetization estimates. YS provided the numerical evaluation and detailed analysis of the system with normal distribution of the dimer interaction energy.

Appendix A: Laplace’s formula

Appendix A: Laplace’s formula

The Laplace’s approximation used to estimate the integrals of the form

$$\begin{aligned} {\mathcal {I}} = \int \limits _a^b f(x) \exp (\lambda S(x)) dx, \end{aligned}$$
(19)

where \(\lambda \) is a large number and S(x) has a local maximum \(x_0 \in [a, b]\). Using the Taylor series expansion near \(x_0\), one obtains

$$\begin{aligned} {\mathcal {I}} \approx \sqrt{\frac{-2\pi }{ \lambda S''(x_0) }} \exp (\lambda S(x_0)) \left( f(x_0) + O(\lambda ^{-1}) \right) . \end{aligned}$$
(20)

In the current paper, \(\lambda \) is a \(1 / \varDelta ^2\), S(x) is the

$$\begin{aligned} (2 \beta J_0 \varDelta ^2 - (J - J_0)^2) / 2 \end{aligned}$$

for the Gaussian function and

$$\begin{aligned} \beta J(r) \varDelta _r^2 - \ln ^2(r / r_0) / 2 \end{aligned}$$

for the log-normal distribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiberkin, K., Strunina, Y. Magnetism of dimer ensemble with random exchange energy. Eur. Phys. J. B 94, 21 (2021). https://doi.org/10.1140/epjb/s10051-020-00028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00028-0

Navigation