Skip to main content
Log in

Role of Algal Community Stability in Harmful Algal Blooms in River-Connected Lakes

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Harmful algal blooms (HABs) in freshwater produce toxins that pose a threat to public health and aquatic ecosystems. Although algal communities have been studied globally to understand the characteristics of HABs, the occurrence of toxic cyanobacteria in freshwater ecosystems is rarely understood. Unlike abiotic factors, the effects of biotic factors (e.g., interaction, dominance, and variability) on the occurrence of toxic cyanobacteria were overlooked due to the intricate interaction of microorganisms under different environmental conditions. To address this problem, a comprehensive ecological concept stability, which encompasses variations in species or communities due to changing biological interactions or environmental fluctuations, was applied in this study. The algal communities in six river-connected lakes in the North Han River, South Korea, were classified into high and low stability groups. The algal species belonging to diatoms and green algae groups played a major role in the interaction within the algal community in highly stable lakes, but the frequency of Microcystis led the interaction within the algal community at the center of the network in low-stability lakes. These results indicate that the interaction within the cluster is easily changed by Microcystis, where the abundance explosively increases in lakes with low algal community stability. Water quality is more strongly associated with the occurrence of toxic cyanobacteria (Microcystis and Dolichospermum). In low-stability lakes, more diverse water quality indicators are correlated with the development of toxic algae than in high-stability lakes. This paper is the first report on the importance of algal community stability in freshwater in the occurrence of toxic cyanobacteria and offers a new perspective on Microcystis monitoring and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Backer LC, Manassaram-Baptiste D, LePrell R, Bolton B (2015) Cyanobacteria and algae blooms: review of health and environmental data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007-2011. Toxins (Basel) 7:1048–1064. https://doi.org/10.3390/toxins7041048

    Article  CAS  Google Scholar 

  2. Michaloudi E, Moustaka-Gouni M, Gkelis S, Pantelidakis K (2009) Plankton community structure during an ecosystem disruptive algal bloom of Prymnesium parvum. J Plankton Res 31:301–309. https://doi.org/10.1093/plankt/fbn114

    Article  CAS  Google Scholar 

  3. He X, Liu YL, Conklin A, Westrick J, Weavers LK, Dionysiou DD, Lenhart JJ, Mouser PJ, Szlag D, Walker HW (2016) Toxic cyanobacteria and drinking water: impacts, detection, and treatment. Harmful Algae 54:174–193. https://doi.org/10.1016/j.hal.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  4. Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483. https://doi.org/10.1038/s41579-018-0040-1

    Article  CAS  PubMed  Google Scholar 

  5. Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E (2017) Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 91:1049–1130. https://doi.org/10.1007/s00204-016-1913-6

    Article  CAS  PubMed  Google Scholar 

  6. Preece EP, Hardy FJ, Moore BC, Bryan M (2017) A review of microcystin detections in estuarine and marine waters: environmental implications and human health risk. Harmful Algae 61:31–45. https://doi.org/10.1016/j.hal.2016.11.006

    Article  CAS  Google Scholar 

  7. Bartram J, Chorus I (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. World Health Organization, E&FN Spon, Routledge

    Book  Google Scholar 

  8. NIER (2017) Operating manual of algae warning system. The Korean Ministry of Environment, Seoul

    Google Scholar 

  9. Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725. https://doi.org/10.1016/j.hal.2009.02.004

    Article  CAS  Google Scholar 

  10. Ger KA, Urrutia-Cordero P, Frost PC, Hansson L-A, Sarnelle O, Wilson AE, Lürling M (2016) The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae 54:128–144. https://doi.org/10.1016/j.hal.2015.12.005

    Article  PubMed  Google Scholar 

  11. Maze G, Olascoaga MJ, Brand L (2015) Historical analysis of environmental conditions during Florida Red Tide. Harmful Algae 50:1–7. https://doi.org/10.1016/j.hal.2015.10.003

    Article  Google Scholar 

  12. Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20. https://doi.org/10.1016/j.hal.2015.12.007

    Article  PubMed  Google Scholar 

  13. Paerl HW, Gardner WS, Havens KE, Joyner AR, McCarthy MJ, Newell SE, Qin B, Scott JT (2016) Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54:213–222. https://doi.org/10.1016/j.hal.2015.09.009

    Article  PubMed  Google Scholar 

  14. Cha Y, Park SS, Kim K, Byeon M, Stow CA (2014) Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model. Water Resour Res 50:2518–2532. https://doi.org/10.1002/2013WR014372

    Article  Google Scholar 

  15. Raine R, McDermott G, Silke J, Lyons K, Nolan G, Cusack C (2010) A simple short range model for the prediction of harmful algal events in the bays of southwestern Ireland. J Mar Syst 83:150–157. https://doi.org/10.1016/j.jmarsys.2010.05.001

    Article  Google Scholar 

  16. Felpeto AB, Roy S, Vasconcelos VM (2018) Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. Oikos 127:85–98. https://doi.org/10.1111/oik.04046

    Article  Google Scholar 

  17. Karasiewicz S, Breton E, Lefebvre A, Fariñas TH, Lefebvre S (2018) Realized niche analysis of phytoplankton communities involving HAB: Phaeocystis spp. as a case study. Harmful Algae 72:1–13. https://doi.org/10.1016/j.hal.2017.12.005

    Article  PubMed  Google Scholar 

  18. Yang C, Wang Q, Simon PN, Liu J, Liu L, Dai X, Zhang X, Kuang J, Igarashi Y, Pan X, Luo F (2017) Distinct network interactions in particle-associated and free-living bacterial communities during a Microcystis aeruginosa bloom in a plateau lake. Front Microbiol 8:1202. https://doi.org/10.3389/fmicb.2017.01202

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang L, Zi J, Xu R, Hilt S, Hou X, Chang X (2017) Allelopathic effects of Microcystis aeruginosa on green algae and a diatom: evidence from exudates addition and co-culturing. Harmful Algae 61:56–62. https://doi.org/10.1016/j.hal.2016.11.010

    Article  Google Scholar 

  20. Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208. https://doi.org/10.1038/nature10832

    Article  CAS  PubMed  Google Scholar 

  21. Hector A, Hautier Y, Saner P, Wacker L, Bagchi R, Joshi J, Scherer-Lorenzen M, Spehn EM, Bazeley-White E, Weilenmann M (2010) General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91:2213–2220. https://doi.org/10.1890/09-1162.1

    Article  CAS  PubMed  Google Scholar 

  22. Lehman CL, Tilman D (2000) Biodiversity, stability, and productivity in competitive communities. Am Nat 156:534–552 https://doi.org/10.1086/303402

    Article  Google Scholar 

  23. Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H (2014) Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett 17:1526–1535. https://doi.org/10.1111/ele.12357

    Article  PubMed  Google Scholar 

  24. Griffiths B, Hallett P, Kuan H, Gregory A, Watts C, Whitmore A (2008) Functional resilience of soil microbial communities depends on both soil structure and microbial community composition. Biol Fertil Soils 44:745–754. https://doi.org/10.1007/s00374-007-0257-z

    Article  Google Scholar 

  25. Hallett LM, Jones SK, MacDonald AAM, Jones MB, Flynn DF, Ripplinger J, Slaughter P, Gries C, Collins SL (2016) codyn: an R package of community dynamics metrics. Methods Ecol Evol 7:1146–1151. https://doi.org/10.1111/2041-210X.12569

    Article  Google Scholar 

  26. Grman E, Lau JA, Schoolmaster Jr DR, Gross KL (2010) Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol Lett 13:1400–1410. https://doi.org/10.1111/j.1461-0248.2010.01533.x

    Article  PubMed  Google Scholar 

  27. Shade A, Peter H, Allison SD, Baho DL, Berga M, Burgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JB, Matulich KL, Schmidt TM, Handelsman J (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417. https://doi.org/10.3389/fmicb.2012.00417

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hooper DU, Chapin FS, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge D, Loreau M, Naeem S (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. https://doi.org/10.1890/04-0922

    Article  Google Scholar 

  29. Hwang S-J, Sim YB, Choi B-G, Kim K, Park C, Seo W, Park M-H, Lee S-W, Shin J-K (2017) Rainfall and hydrological comparative analysis of water quality variability in Euiam reservoir, the North-Han River, Korea. Korean J Ecol Environ 50:29–45. https://doi.org/10.11614/KSL.2017.50.1.029

    Article  Google Scholar 

  30. MOE (2018) Korean standard methods for examination of drinking water quality. The Korean Ministry of Environment, Seoul

    Google Scholar 

  31. Joung S-H, Kim C-J, Ahn C-Y, Jang K-Y, Boo SM, Oh H-M (2006) Simple method for a cell count of the colonial cyanobacterium, Microcystis sp. J Microbiol 44:562–565

    PubMed  Google Scholar 

  32. Hirose H, Yamagishi T (1977) Illustrations of the Japanese freshwater algae. Uchidarokakuho, Tokyo

    Google Scholar 

  33. Chung J, Kim HS (1994) Fresh-water algae new to Korea (VI). Korean J Phycol 9:115–124

    Google Scholar 

  34. Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474. https://doi.org/10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2

    Article  Google Scholar 

  35. Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex Syst 1695:1–9

    Google Scholar 

  36. Konietschke F, Placzek M, Schaarschmidt F, Hothorn LA (2015) nparcomp: an R software package for nonparametric multiple comparisons and simultaneous confidence intervals. J Stat Softw 64(Nr 9 64):1–17. https://doi.org/10.18637/jss.v064.i09

    Article  Google Scholar 

  37. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  38. Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes PC, Xu J, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10:1891–1901. https://doi.org/10.1038/ismej.2015.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muscarella ME, Jones SE, Lennon JT (2016) Species sorting along a subsidy gradient alters bacterial community stability. Ecology 97:2034–2043. https://doi.org/10.1890/15-2026.1

    Article  PubMed  Google Scholar 

  40. Gonze D, Coyte KZ, Lahti L, Faust K (2018) Microbial communities as dynamical systems. Curr Opin Microbiol 44:41–49. https://doi.org/10.1016/j.mib.2018.07.004

    Article  PubMed  Google Scholar 

  41. Ramond JB, Welz PJ, Cowan DA, Burton SG (2012) Microbial community structure stability, a key parameter in monitoring the development of constructed wetland mesocosms during start-up. Res Microbiol 163:28–35. https://doi.org/10.1016/j.resmic.2011.09.003

    Article  PubMed  Google Scholar 

  42. Nuismer SL, Harmon LJ (2015) Predicting rates of interspecific interaction from phylogenetic trees. Ecol Lett 18:17–27. https://doi.org/10.1111/ele.12384

    Article  PubMed  Google Scholar 

  43. Holbrook GP, Davidson Z, Tatara RA, Ziemer NL, Rosentrater KA, Grayburn WS (2014) Use of the microalga Monoraphidium sp. grown in wastewater as a feedstock for biodiesel: cultivation and fuel characteristics. Appl Energy 131:386–393. https://doi.org/10.1016/j.apenergy.2014.06.043

    Article  CAS  Google Scholar 

  44. Martınez M, Sánchez S, Jimenez J, El Yousfi F, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272. https://doi.org/10.1016/S0960-8524(99)00121-2

    Article  Google Scholar 

  45. Okbah MA, Hussein NR (2006) Impact of environmental conditions on the phytoplankton structure in Mediterranean Sea Lagoon, Lake Burullus, Egypt. Water Air Soil Pollut 172:129–150. https://doi.org/10.1007/s11270-005-9066-x

    Article  CAS  Google Scholar 

  46. Nishu SD, Kang Y, Han I, Jung TY, Lee TK (2019) Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and green algae. PLoS One 14:e0213370. https://doi.org/10.1371/journal.pone.0213370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng YM, Cao P, Fu B, Hughes JM, He JZ (2013) Ecological drivers of biogeographic patterns of soil archaeal community. PLoS One 8:e63375. https://doi.org/10.1371/journal.pone.0063375

    Article  PubMed  PubMed Central  Google Scholar 

  48. Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20:470–474. https://doi.org/10.1016/j.tree.2005.07.006

    Article  PubMed  Google Scholar 

  49. Carey CC, Ewing HA, Cottingham KL, Weathers KC, Thomas RQ, Haney JF (2012) Occurrence and toxicity of the cyanobacterium Gloeotrichia echinulata in low-nutrient lakes in the northeastern United States. Aquat Ecol 46:395–409. https://doi.org/10.1007/s10452-012-9409-9

    Article  CAS  Google Scholar 

  50. de la Escalera GM, Kruk C, Segura AM, Nogueira L, Alcántara I, Piccini C (2017) Dynamics of toxic genotypes of Microcystis aeruginosa complex (MAC) through a wide freshwater to marine environmental gradient. Harmful Algae 62:73–83. https://doi.org/10.1016/j.hal.2016.11.012

    Article  CAS  Google Scholar 

  51. Paerl HW, Fulton 3rd RS, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. ScientificWorldJournal 1:76–113. https://doi.org/10.1100/tsw.2001.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Korea Ministry of Environment (MOE) as a knowledge-based environmental service human resource development project, and by the Korea Environment Industry and Technology Institute (KEITI) through The Decision Support System Development Project for Environmental Impact Assessment (No. 2020002990009).

Author information

Authors and Affiliations

Authors

Contributions

Min Sung Kim performed data analysis and wrote the manuscript; Keon Hee Kim and Soon Jin Hwang assisted with designing the analysis and revising the manuscript. Tae Kwon Lee designed and coordinated the project, performed data analysis, and revised the manuscript.

Corresponding author

Correspondence to Tae Kwon Lee.

Ethics declarations

Competing Interest

The authors declare that they have no conflict of interest.

Supplementary Information

ESM 1

(DOCX 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.S., Kim, K.H., Hwang, S.J. et al. Role of Algal Community Stability in Harmful Algal Blooms in River-Connected Lakes. Microb Ecol 82, 309–318 (2021). https://doi.org/10.1007/s00248-020-01676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01676-6

Keywords

Navigation