Skip to main content

Advertisement

Log in

Tuberculosis: current scenario, drug targets, and future prospects

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Globally recognized genetic modification with time has supported the emergence of versatile and novel featured organisms in nature, some of which can be analogized with Pandora’s box elements; like Mycobacterium sp. which has revived itself again after again in a repetitive order over decades and, gradually, contriving a red alert on the world health graph. It needs to be rectified with the motivation of new drug approval considering the pipe line moieties or, apt a choice from the existing drug genera. Although, with genetic modification and advancement Mycobacterium tuberculosis has ruined the first-line therapy in ash, it also opens up different loops and wholes to drug susceptibility. New moieties: Tiliacorinine, 2′-nortiliacorinine, tiliacorine or Cyclohexylgriselimycin raised from different sources of nature, have given another opportunity for the survival, besides, new approved drugs, like bedaquiline, delamanid, pyrifazimine, telacebec, or the under focused pharmacophores; such as diarylquinoline, quinolones, ethylurea benzimidazole, etc. are the appreciable efforts achieved. Thereupon, InhA, KatG, Clp proteases, Menaquinone, DNA gyrase, VDR Fok1, etc. are the new target sets for the drug discovery which has immense potency to generate a number of targeted molecules with effective anti-TB activity. It is a critical discussion of the TB futuristic approach including, clinical trials, repurposed drugs, pipeline motifs, natural products, upcoming drug targets from the cell wall, protein, and DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. WHO. WHO Global TB report. 2019. http://www.who.int/tb/publications/global-reports/en/ Accessed Nov 2019.

  2. Zink AR, Grabner W, Nerlich AG. Molecular identification of human tuberculosis in recent and historic bone tissue samples: The role of molecular techniques for the study of historic tuberculosis. Am J Phys Anthropol. 2005;126:32–47.

    Article  PubMed  Google Scholar 

  3. Echeverria-Valencia G, Flores-Villalva S, Espitia CI. Virulence factors and pathogenicity of mycobacterium, mycobacterium - research and development, Wellman Ribón, IntechOpen; 2017. https://www.intechopen.com/books/mycobacterium-research-and-development/virulence-factors-and-pathogenicity-of-mycobacterium.

  4. Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003;16:463–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA. 2003;100:12989–94.

    Article  CAS  PubMed  Google Scholar 

  6. Shimono N, Morici L, Casali N, Cantrell S, Sidders B, Ehrt S, et al. Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc Natl Acad Sci USA. 2003;100:15918–23.

    Article  CAS  PubMed  Google Scholar 

  7. Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, et al. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4:3–66.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu H, Bao Y, Wang L, Li X, Sun J. Mycobacterium marinum down-regulates miR-148a in macrophages in an EsxA-dependent manner. Int Immunopharmacol. 2019;73:41–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amira R, Sami G, Mohamed-Ridha B, Makram E. Mycobacterium tuberculosis virulent factor ESAT-6 drives macrophage differentiation toward the pro-inflammatory M1 phenotype and subsequently switches it to the anti-inflammatory M2 phenotype. Front Cell Infect Microbiol. 2018;8:327.

    Article  Google Scholar 

  10. Tiwari S, Casey R, Goulding CW, Hingley-Wilson S, Jacobs WR. Infect and inject: how Mycobacterium tuberculosis exploits its major virulence-associated type VII secretion system, ESX-1. Microbiol Spectr. 2019;7:1–23.

    Article  Google Scholar 

  11. Glaziou P, Floyd K, Raviglione MC. Global epidemiology of tuberculosis. Semin Respir Crit Care Med. 2018;39:271–85.

    Article  PubMed  Google Scholar 

  12. Sun J, Champion PA, Bigi F. Editorial: cellular and molecular mechanisms of Mycobacterium tuberculosis Virulence. Front Cell Infect Microbiol. 2019;9:331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bussi C, Gutierrez MG. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol Rev. 2019;43:341–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Torrelles J, Schlesinger L. Integrating lung physiology, immunology and tuberculosis. Trends Microbiol. 2017;25:688–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seshadri C, Sedaghat N, Campo M, Perterson G, Wells RD, Olson GS, et al. Tuberculosis Research Unit (TBRU), transcriptional networks are associated with resistance to Mycobacterium tuberculosis infection. PLoS ONE. 2017;12:e0175844.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shah NS, Auld SC, Brust J, Mathema B, Ismail N, Moodley P, et al. Transmission of extensively drug-resistant tuberculosis in South Africa. N Engl J Med. 2017;376:243–53.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dheda K, Lenders L, Magombedze G, Srivastava S, Raj P, Arning E, et al. Drug penetration gradients associated with acquired drug resistance in patients with tuberculosis. Am J Respir Crit Care Med. 2018;198:1208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Behr M, Edelstein P, Ramakrishnan L. Revisiting the time table of tuberculosis. BMJ. 2018;362:K2736.

    Google Scholar 

  19. Felt JR, Yurkovich C, Garshott DM, Kamat D, Farooqi A, Fribley AM, et al. The utility of real-time quantitative polymerase chain reaction genotype detection in the diagnosis of urinary tract infections in children. Clin Pediatr (Philos). 2017;56:912–9.

    Article  Google Scholar 

  20. Department of Health. Basic statistics: about incidence, prevalence, morbidity and mortality- statistics teaching tools. NY: Department of Health. 2015.

  21. UNAIDS. Fact Sheet- latest statistics on the status of the AIDS epidemic. UNAIDS. (The global statistic, 2018). https://www.unaids.org.

  22. Pande T, Cohen C, Pai M, Khan A. Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: a systematic review. Int J Tuberc Ling Dis. 2016;20:1226–30.

    Article  CAS  Google Scholar 

  23. WHO. Chest radiography in tuberculosis detection: summary of current WHO recommendations and guidance on programmatic approaches. 2016. http://apps.who.int/iris/bitstream/handle/10665/252424/9789241511506-eng.pdf Accessed Nov 2019.

  24. Lawn S, Gupta-Wright A. Detection of lipoarabanomanna (LAM) in urine is indicative of disseminated tuberculosis with renal involvement in patients living with HIV and advanced immunodeficiency. Trans R Soc Trop Med Hyg. 2016;110:180–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lawn SD. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect Dis. 2012;12:103.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peter JG, Zijenah LS, Chanda D, Clowes P, Lesosky M, Gina P, et al. Effect on mortality of point-of-care, urine-based lipoarabanomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel group, multi-country, open-label, randomised, controlled trial. Lancet. 2016;387:1187–97.

    Article  PubMed  Google Scholar 

  27. Gupta-Wright A, Corbett EL, van Oosterhout JJ, Wilson D, Grint D, Alufandika-Moyo M, et al. Rapid urine-based screening for tuberculosis in HIV-positive patients admitted to hospital in Africa (STAMP): a pragmatic, multicentre, parallel-group, double-blind, randomised controlled trial. Lancet. 2018;392:292–301.

    Article  PubMed  PubMed Central  Google Scholar 

  28. WHO. The use of the lateral flow urine lipoarabanomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV. 2015. http://apps.who.int/iris/bitstream/handle/10665/193633/9789241509633_eng.pdf?sequence=1 Accessed Nov 2019.

  29. WHO. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. 2018. https://www.who.int/tb/publications/2018/latent-tuberculosis-infection/en Accessed Nov 2019.

  30. Pai M, Denkinger C, Kik SV, Rangaka MX, Zwerling A, Oxlade O, et al. Gamma interferon release assays for detection of M tuberculosis infection. Clin Microbiol Rev. 2014;27:3–20.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aggerbeck H, Ruhwald M, Hoff ST, Borregaard B, Hellstrom E, Malahleha M, et al. C-Tb skin test to diagnose Mycobacterium tuberculosis infection in children and HIV-infected adults: a phase 3 trial. PLoS ONE. 2018;13:e0204554.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ruhwald M, Aggerbeck H, Vázquez Gallardo RV, Hoff ST, Villate JI, Borregaard B, et al. Safety and efficacy of the C-TB skin test to diagnose Mycobacterium tuberculosis infection, compared with interferon γ release assay and the tuberculin skin test: a phase 3, randomised, double-blind controlled trial. Lancet. 2017;5:259–68. TESEC Working Group.

    CAS  Google Scholar 

  33. Furin J, Cox H, Pai M. Tuberculosis. Lancet. 2019;393:1642–56.

    Article  PubMed  Google Scholar 

  34. Lange C, Mori T. Advances in the diagnosis of tuberculosis. Respirology. 2010;15:220–40.

    Article  PubMed  Google Scholar 

  35. Cambau E, Drancourt M. Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882. Clin Microbiol Infect. 2014;20:196–201.

    Article  CAS  PubMed  Google Scholar 

  36. Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003;48:77–84.

    Article  CAS  PubMed  Google Scholar 

  37. Rapid Biosensor Systems - Rapid Biomedical Solutions for Infectious Diseases, TB breathalyser, 2020. http://www.rapidbiosensor.com/tbbreathalyser. Accessed Nov 2019.

  38. Vandeventer PE, Weigel KM, Salazar J, Erwin B, Irvine B, Doebler R, et al. Mechanical disruption of lysis-resistant bacterial cells by use of a miniature, low-power, disposable device. J Clin Microbiol. 2011;49:2533–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ferguson TM, Weigel KM, Becker AL, Ontengco D, Narita M, Tolstorukov I, et al. Pilot study of a rapid and minimally instrumented sputum sample preparation method for molecular diagnosis of tuberculosis. Sci Rep. 2016;6:19541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Felt JR, Yurkovich C, Garshott DM, Kamat D, Farooqi A, Fribley AM, et al. The utility of real-time quantitative polymerase chain reaction genotype detection in the diagnosis of urinary tract infections in children. Clin Pediatr (Philos). 2017;56:912–9.

    Article  Google Scholar 

  41. Pedersen JL, Bokil NJ, Saunders BM. Developing new TB biomarkers, are miRNA the answer. Tuberculosis (Edinb). 2019;118:101860.

    Article  CAS  Google Scholar 

  42. Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, et al. Plasma chemokines are biomarkers of disease severity, higher bacterial burden and delayed sputum culture conversion in pulmonary tuberculosis. Sci Rep. 2019;9:18217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ronacher K, Chegou NN, Kleynhans L, DjobaSiawaya JF, du Plessis N, Loxton AG, et al. Distinct serum biosignatures are associated with different tuberculosis treatment outcomes. Tuberculosis (Edinb). 2019;118:101859.

    Article  CAS  Google Scholar 

  44. Pandey V, Singh P, Singh S, Arora N, Quadir N, Singh S, et al. SeeTB: A novel alternative to sputum smear microscopy to diagnose tuberculosis in high burden countries. Sci Rep. 2019;9:16371.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Qin ZZ, Sander MS, Rai B, Titahong CN, Sudrungrot S, Laah SN, et al. Using artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep. 2019;9:15000.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fox GJ, Menzies D. A Review of the Evidence for using Bedaquiline (TMC 207) to Treat Multi-Drug resistant tuberculosis. Infect Dis Ther. 2013;2:123.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rode HB, Lade DM, Grée R, Mainkar PS, Chandrasekhar S. Strategies towards the synthesis of anti-tuberculosis drugs. Org Biomol Chem. 2019;5,17:5428–59.

    Article  Google Scholar 

  48. Walker J,Tadena N. Tuberculosis drug gets fast track clearance. The Wall Street J. 2013.

  49. Matteeli A, Carvalho AC, Dooley KE, Kritski A. TMC207: the first compound of a new class of potent anit-tuberculosis drug. Future Microbiol. 2010;5:849–58.

    Article  Google Scholar 

  50. US Food and Drug Administration. FDA new release.

  51. Mahajan R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int J Appl Basic Med Res. 2013;3:1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Goel D. Bedaquiline: A novel drug to combat multiple drug resistant tuberculosis. J PharmacolPharmacother. 2014;5:76–78.

    Article  Google Scholar 

  53. Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, et al. A diarylquinoline drug active on ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:223–7.

    Article  CAS  PubMed  Google Scholar 

  54. Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, et al. Diarylquinolines target subunit C of mycobacterial ATP synthase. Nat Chem Biol. 2007;3:323–4.

    Article  CAS  PubMed  Google Scholar 

  55. Koul A, Vranckx L, Dendouga N, Balemans W, Van den Wyngaert I, Vergauwen K, et al. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostatis. J Biol Chem. 2008;283:25273–80.

    Article  CAS  PubMed  Google Scholar 

  56. Rustomjee R, Diacon AH, Allen J, Venter A, Reddy C, Patientia RF, et al. Early bactericidal activity and pharmacokinetics of the diarylquinolines TMC207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother. 2008;52:2831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rao SP, Alonso S, Rand L, Dick T, Pethe K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2008;105:11945–50.

    Article  CAS  PubMed  Google Scholar 

  58. Haaagsma AC, Abdillahi-Ibrahim R, Wagner MJ, Krab K, Vergauwen K, Guillemont J, et al. Selectivity of TMC207 towards microbacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother. 2009;53:1290–2.

    Article  Google Scholar 

  59. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, et al. The diarylquinoline TMC207 for multiple drug resistant tuberculosis. N Engl J Med. 2009;360:2397–405.

    Article  CAS  PubMed  Google Scholar 

  60. Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S, Andersson DI. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinolines ATP synthase inhibitor. Antimicrob Agents Chemother 2010;54:1022–8.

    Article  CAS  PubMed  Google Scholar 

  61. Diacon AH, Donald PR, Pym A, Grobusch M, Patientia RF, Mahanyele R, et al. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug resistant tuberculosis: Long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob Agents Chemother. 2012;56:3271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kawasaki M. Mechanism of action of OPC-67683 against M. tuberculosis, interscience conference on antimicrobial agents and chemotheraphy (ICAAC). Washington, DC: Poster F-1463; 2005.

    Google Scholar 

  63. Doi N, Disratthakit A. Characteristic antimicrobial spectra of the novel anti-TB drug candidates OPC-67683 and PA-824. Interscience Conference on Antimicrobial Agents and Chemotheraphy (ICAAC). San Francisco CA: Poster F1-F1337a; 2006.

    Google Scholar 

  64. OPC-67683 tuberculosis (Ednib). 2008; 88:132–3.

  65. Mastumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, et al. OPC-67683, a nitro dihydro imidazooxazole derivative with promising derivatives with promising action against tuberculosis Invitro and in mice. PLoS Med. 2006;3:e466.

    Article  Google Scholar 

  66. Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, et al. Science. 2005;307:223–7.

    Article  CAS  PubMed  Google Scholar 

  67. Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58:2979–81.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xu J, Wang B, Hu M, Huo F, Guo S, Jing W, et al. Primary Clofazimine and Bedaquiline Resistance among Isolates from Patients with Multidrug-Resistant Tuberculosis Antimicrob. Agents Chemother. 2017;61:e00239.

    Article  Google Scholar 

  69. Patel H, Pawara R, Pawara K, Ahmed F, Shirkhedkar A, Surana S. A structural insight of bedaquiline for the cardiotoxicity and hepatotoxicity. Tuberculosis (Edinb). 2019;117:79–84.

    Article  CAS  Google Scholar 

  70. Sutherland HS, Tong AST, Choi PJ, Conole D, Blaser A, Franzblau SG, et al. Structure-activity relationships for analogs of the tuberculosis drug bedaquiline with the naphthalene unit replaced by bicyclic heterocycles. Bioorg Med Chem. 2018;26:1797–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tong AS, Choi PJ, Blaser A, Sutherland HS, Tsang SKY, Guillemont J, et al. 6-Cyano analogues of bedaquiline as less lipophilic and potentially safer diarylquinolines for tuberculosis. ACS Med Chem Lett. 2017;8:1019–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. He C, Preiss L, Wang B, Fu L, Wen H, Zhang X, et al. Structural simplification of bedaquiline: the discovery of 3‐(4‐(N, N‐Dimethylaminomethyl) phenyl) quinoline‐Derived antitubercular lead compounds. ChemMedChem. 2017;12:106–19.

    Article  CAS  PubMed  Google Scholar 

  73. Choi PJ, Sutherland HS, Tong AST, Blaser A, Franzblau SG, Cooper CB, et al. Synthesis and evaluation of analogues of the tuberculosis drug bedaquiline containing heterocyclic B-ring units. Bioorg Med Chem Lett. 2017;27:5190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by Intracellular NO release. Science. 2008;322:1392–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gler MT, Skripconoka V, Garavito ES, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, et al. Delamanid for multidrug resistant pulmonary tuberculosis. N Engl J Med. 2012;366:2151–60.

    Article  CAS  PubMed  Google Scholar 

  76. Sasaki H, Haraguchi Y, Itotani M, Kuroda H, Hashizume H, Tomishige T, et al. Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J Med Chem. 2006;49:7854.

    Article  PubMed  Google Scholar 

  77. J Fischer. Successful drug discovery. John Wiley & Sons, Wiley-VCH: 2016. p. 139.

  78. Diacon AH, Dawson R, Hanekom M, Narunsky K, Venter A, Hittel N, et al. Early bactericidal activity of delamanid (OPC-67683) in smear positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis. 2011;15:949–54.

    Article  CAS  PubMed  Google Scholar 

  79. Skirpconoka V, Danilovits M, Pehme L, Tomson T, Skenders G, Kummik T, et al. Delamanid improves outcomes and reduces mortality in multidrug resistant tuberculosis. Eur Respir J. 2013;41:1393–400.

    Article  Google Scholar 

  80. Field SK. Safety and efficacy of Delamanid in the treatment of Multidrug-Resistant Tuberculosis (MDR-TB). Clin Med Insights:Therapeutics. 2013;5:137–49.

    CAS  Google Scholar 

  81. Ryan NJ, Lo JH. Delamanid: first global approval. Drugs. 2014;74:1041–5.

    Article  CAS  PubMed  Google Scholar 

  82. Xavier AS, Lakshmanan M. Delamanid: a new armor in combating drug-resistant tuberculosis. J PharmacolPharmacother. 2014;5:222–4.

    Article  CAS  Google Scholar 

  83. Lewis JM, Sloan DJ. The role of Delamanid in the treatment of drug resistant tuberculosis. Ther Clin Risk Manag 2015;11:779–91.

    PubMed  PubMed Central  Google Scholar 

  84. Rustomjee R, Zumla A. Delamanid expanded access novel treatment of drug resistant tuberculosis. Infect Drug Resist. 2015;8:359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu J, Wang B, Fu L, Zhu H, Guo S, Huang H, et al. In vitro and in vivo activities of the riminophenazine TBI-166 against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019;63:e02155–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. http://www.treatmentactiongroup.org/sites/default/files/pipeline_tb_treatment_lm_final.pdf Accessed Nov 2019.

  87. Kim, June (Qurient, Gyeonggi-do, Korea). Personal communication with: Lindsay McKenna (Treatment Action Group, New York, NY).

  88. https://www.newtbdrugs.org/pipeline/trials/stream-trial-stage-2. Accessed Nov 2019.

  89. Moodley R, Godec TR. STREAM Trial Team, Short-course treatment for multidrug-resistant tuberculosis: the STREAM trials. Eur Respir Rev. 2016;25:29–35.

    Article  PubMed  Google Scholar 

  90. https://www.newtbdrugs.org/pipeline/trials/tbtc-study-31-actg-5349-4-month-treatment-regimens Accessed Nov 2019.

  91. http://www.tballiance.org/downloads/NixTB/NixTB_factsheet Accessed Nov 2019.

  92. https://www.newtbdrugs.org/pipeline/trials/bedaquiline-linezolid-obr-mdr-next-trial Accessed Nov 2019.

  93. http://www.pactr.org/ATMWeb/appmanager/atm/atmregistry?dar=true&tNo=PACT R201409000848428 Accessed Nov 2019.

  94. https://www.newtbdrugs.org/pipeline/trials/endtb Accessed Nov 2019.

  95. https://www.msfaccess.org/about-us/media-room/press-releases/endtb-partnership-launches-clinical-trial-target-toughest-strains Accessed Nov 2019.

  96. https://www.newtbdrugs.org/pipeline/trials/rifashort Accessed Nov 2019.

  97. https://www.newtbdrugs.org/pipeline/trials/stand Accessed Nov 2019.

  98. https://clinicaltrials.gov/show/NCT02342886 Accessed Nov 2019.

  99. https://www.tballiance.org/portfolio/regimen/bpamz Accessed Nov 2019.

  100. https://www.tballiance.org/portfolio/trial/5097 Accessed Nov 2019

  101. https://www.tballiance.org/portfolio/regimen/bpaz Accessed Nov 2019.

  102. http://www.resisttb.org/wp-content/uploads/2019/11/RESIST-TB-CTPR_11_08_2019.pdf Accessed Nov 2019

  103. https://clinicaltrials.gov/ct2/show/NCT02354014Accessed Nov 2019

  104. https://www.tballiance.org/portfolio/trial/11883Accessed Nov 2019

  105. http://tbonline.info/posts/2019/4/4/south-africa-world-first-programme-combat-drug-res Accessed Nov 2019

  106. https://impaactnetwork.org/studies/IMPAACT2003B.asp Accessed Nov 2019

  107. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, et al. the diarylquinoline TMC207 for multiple drug resistant tuberculosis. N. Engl J Med. 2009;360:2397–405.

    Article  CAS  PubMed  Google Scholar 

  108. Diacon AH, Donald PR, Pym A, Grobusch M, Patientia RF, Mahanyele R, et al. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug resistant tuberculosis: Long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob Agents Chemother. 2012;56:3271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Upton AM, Cooper CB, Yang TJ, Lotlikar MU, Li SY, Betoudji F, et al. SUNDAY - 47 / SUNDAY - 47 - TBAJ-587, a next generation diarylquinoline in preclinical development for tuberculosis, with superior antimicrobial potency and efficacy and a low risk of QTc prolongation, asm Microbe. 2017; New Orleans.

  110. Franzblau SG, Cho S, Wan B, Ma R, Wang Y, Almeida D, et al., SUNDAY - 48 / SUNDAY - 48 - in vitro activity against m. tuberculosis and cross-resistance with bedaquiline of TBAJ-587, a next generation diarylquinoline in preclinical development for tuberculosis, asm Microbe, 2017; New Orleans.

  111. Yang TJ, Salinger DH, Lotlik MU, Shaw JP, Hermann DJ, Fotouhi N, et al., SUNDAY - 51 / SUNDAY - 51 - Preclinical Pharmacokinetics and Predicted Clinical Pharmacokinetics of TBAJ-587, a Next Generation Diarylquinoline in Preclinical Development for Tuberculosis, asm Microbe, 2017. New Orleans.

  112. http://www.newtbdrugs.org/pipeline/discovery. Accessed Nov 2019.

  113. Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP. 1,8-naphthyridine derivatives. a new class of chemotherapeutic agents. J Med Pharm Chem. 1962;91:1063–5.

    Article  CAS  PubMed  Google Scholar 

  114. Yoshida H, Bogaki M, Nakamura M, Yamanaka LM, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob Agents Chemother. 1991;35:1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ruiz JJ. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection, Antimicrob. Chemother. 2003;51:1109.

    CAS  Google Scholar 

  116. Manjunatha UH, Lahiri R, Randhawa B, Dowd CS, Krahenbuhl JL, Barry CE. Mycobacterium leprae is naturally resistant to PA-824. Antimicrob Agents Chemother. 2006;50:3350–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lin PL, Dartois V, Johnston PJ, Janssen C, Via L, Goodwin MB, et al. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc Nat Acad Sci USA. 2012;109:14188–93.

    Article  CAS  PubMed  Google Scholar 

  118. Strover CK, Warrener P, Devanter DRV, Sherman DR, Arain TM, Langhorne MH, et al. A small molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405:962–6.

    Article  Google Scholar 

  119. Carroll MW, Jeon D, Mountz JM, Lee JD, Jeong YJ, Zia N, et al. Efficacy and safety of metronidazole for pulmonary multidrug resistant tuberculosis. Antimicrob Agents Chemother. 2010;54:3402–7.

    Google Scholar 

  120. Lee RE, Protopopova M, Crooks E, Slayden RA, Terrot M, Barry CE. Combinatorial lead optimization of [1,2]-diamines based on ethumbutol as potential antituberculosis preclinical candidates. J Comb Chem. 2003;5:172–87.

    Article  CAS  PubMed  Google Scholar 

  121. Nikonenko BV, Protopopova M, Samala R, Einck L, Nacy CA. Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother. 2007;51:1563–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reddy VM, Einck L, Andries K, Nacy CA. Invitro interactions between new antitubercular drug candidates SQ109 and TMC207. Antimicrob Agents Chemother. 2010;54:2840–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, et al. SQ109 targets MmpL3, a membrane transporter of trehalosemonomycolate involved in mycolic acid donation to cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012;56:1797–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Makarov V, Manina G, Mikusova K, Möllmann U, Ryabova O, Saint-Joanis B, et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science. 2009;324:801–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Neres J, Pojer F, Molteni E, Chiarelli LR, Dhar N, Boy-Röttger S, et al. Structural basis for benzothiazinone mediated killing of Mycobacterium tuberculosis. Sci Transl Med. 2012;4:150ra121.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Trefezer C, Rengifo-Gonzalez M, Hinner MJ, Schneider P, Makarov V, Cole ST, et al. Benzothiazinones: prodrug that covalently modify the decaprenyl-phosphoryl-beta-D-ribose 2’-epimerase DprE1of Mycobacterium tuberculosis. J Am Chem Soc. 2010;132:13663–5.

    Article  Google Scholar 

  127. Christophe T, Jackson M, Jeon HK, Fenistein D, Dominguez MC, Kim J, et al. High content screening identifies decaprenyl-phosphoryl-beta-D-ribose 2’-epimerase as a target for intracellular antimicrobial inhibitors. PLoSPathog. 2009;5:e1000645.

    Google Scholar 

  128. Pasca MR, Degiacomi G, Ribeiro ALD, Zara F, Mori PD, Heym B, et al. Clinical isolates of Mycobacterium tuberculosis in four Europen hospitals are uniformly susceptible to benzothiazinones. Antimicrob Agents Chemother. 2010;54:1616–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lechartier B, Hartkoorn RC, Cole ST. Invitro combination studies of benzothiazinones lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012;56:5790–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Migliori GB, Eker B, Richardson MD, Sotgiu G, Zellweger JP, Skrahina A, et al. A retrospective TBNET assessment of linezolid safety, tolerability and efficacy in multi-drug resistant tuberculosis. Eur Respir J. 2009;34:387–93. TBNET Study Group.

    Article  CAS  PubMed  Google Scholar 

  131. Williams KN, Stover CK, Zhu T, Tasneen R, Tyagi S, Grosset JH, et al. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model. Antimicrob Agents Chemother. 2009;53:1314–9.

    Article  CAS  PubMed  Google Scholar 

  132. William KN, Brickner SJ, Stover CK, Zhu T, Ogden A, Tasneen R, et al. Addition of PNU-100480 to the first line drugs shortens the time needed to cure murine tuberculosis. Am J Respir Crit Care Med 2009;180:371–6.

    Article  Google Scholar 

  133. Swindells S. New drugs to treat tuberculosis. F1000Med Rep. 2012;4:12.

    Google Scholar 

  134. Wallis RS, Dawson R, Friedrich SO, Venter A, Paige D, Zhu T, et al. Mycobacterial activity of Sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS ONE. 2014;9:e94462.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Barbachyn MR, Hutchinson DK, Brickner SJ, Cynamon MH, Kilburn JO, Klemens SP, et al. Identification of a novel oxazolidinone (U-1004800) with potent antimycobacterial activity. J Med Chem. 1996;39:680–5.

    Article  CAS  PubMed  Google Scholar 

  136. Wallis RS, Jakubiec W, Kumar V, Bedarida G, Silvia A, Paige D, et al. Biomarker assisted dose selection for safety and efficacy in early development of PNU-100480 for tuberculosis. Antimicrob Agents Chemother. 2011;55:567–74.

    Article  CAS  PubMed  Google Scholar 

  137. Zhu T, Friedrich SO, Diacon A, Wallis RS. Population pharmacokinetic/ pharmacodynamic analysis of the bactericidal activities of sutezolid (PNU-100480) and its major metabolite against intracellular Mycobacterium tuberculosis in exvivo Whole Blood cultures of patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2014;58:3306–11.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Balasubramanian V, Solapure S, Iyer H, Ghosh A, Sharma S, Kaur P, et al. Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinonefor treatment of tuberculosis. Antimicrob Agents Chemother. 2014;58:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mdluli K, Cooper C, Yang T, Lotlikar M, Betoudji F, Pinn M, et al., SUNDAY - 50 / SUNDAY - 50 - TBI-223: a safer oxazolidinone in pre-clinical development for tuberculosis, asm Microbe, 2017; New Orleans.

  140. https://sperotherapeutics.com/news/press-releases/spero-therapeutics-acquires-novel-gyrase-inhibitors-vertex-pharmaceuticals/ Accessed Nov 2019.

  141. https://sperotherapeutics.com/news/press-releases/spero-therapeutics-receives-grant-from-national-institutes-of-health-to-explore-novel-treatment-combinations-for-tuberculosis/ (Spero Therapeutics Press Release.2017. NIH Award) Accessed Nov 2019.

  142. Shoen C, Pucci M, DeStefano M, Cynamon M; SUNDAY - 43 / SUNDAY - 43 - Efficacy of SPR720 and SPR750 Gyrase Inhibitors in a Mouse Mycobacterium tuberculosis Infection Model.

  143. https://sperotherapeutics.com/pipeline/spr720-non-tuberculosis-mycobacterium/. Accessed Nov 2019.

  144. https://www.newtbdrugs.org/news/spero-therapeutics-announces-collaboration-gmri-develop-spr720-tb. Accessed Nov 2019.

  145. Brown-Elliott BA, Rubio A, Wallace RJ Jr, In Vitro Susceptibility Testing of a Novel Benzimidazole, SPR719, against Nontuberculous Mycobacteria, Antimicrob Agents Chemother., 2018;62.

  146. Krasavin M, Lukin A, Vedekhina T, Manicheva O, Dogonadze M, Vinogradova T, et al. Conjugation of a 5-nitrofuran-2-oyl moiety to aminoalkylimidazoles produces non-toxic nitrofurans that are efficacious in vitro and in vivo against multidrug-resistant Mycobacterium tuberculosis. Eur J Med Chem. 2018;157:1115–26.

    Article  CAS  PubMed  Google Scholar 

  147. Chiarelli LR, Mori M, Barlocco D, Beretta G, Gelain A, Pini E, et al. Discovery and development of novel salicylate synthase (MbtI) furanic inhibitors as antitubercular agents. Eur J Med Chem. 2018;155:754–63.

    Article  CAS  PubMed  Google Scholar 

  148. Kumar G, Krishna VS, Sriram D, Jachak SM. Synthesis of carbohydrazides and carboxamides as antitubercular Agents. Eur J Med Chem. 2018;5:871–84. 156

    Article  Google Scholar 

  149. Macchi FS, Pissinate K, Villela AD, Abbadi BL, Rodrigues V, Nabinger DD, et al. 1H-Benzo[d]imidazoles and 3,4 dihydroquinazolin-4-ones: Design, synthesis and antitubercular activity. Eur J Med Chem. 2018;155:153–64.

    Article  CAS  PubMed  Google Scholar 

  150. Kumar M, Singh K, Ngwane AH, Hamzabegovic F, Abate G, Baker B, et al. Reversed Isoniazids: Design, synthesis and evaluation against Mycobacterium tuberculosis. Bioorg Med Chem. 2018;26:833–44.

    Article  CAS  PubMed  Google Scholar 

  151. Alluri KK, Reshma RS, Suraparaju R, Gottapu S, Sriram D. Synthesis and evaluation of 4’,5’-dihydrospiro[piperidine-4,7’-thieno[2,3-c]pyran] analogues against both active and dormant Mycobacterium Tuberculosis. Bioorg Med Chem. 2018;26(1462):49

    Google Scholar 

  152. Vickers CF, Silva APG, Chakraborty A, Paulina Fernandez P, Kurepina N, Saville C, et al. Structure-based design of MptpB inhibitors that reduce multidrug-resistant mycobacterium tuberculosis survival and infection burden in vivo. J Med Chem. 2018;61:8337–52.

  153. Rodriques MO, Cantosb JB, D’Ocac RM, Soaresa KL, Coelhob TS, Piovesana LA, et al. Synthesis and antimycobacterial activity of Isoniazid derivatives from renewable fatty acid. Bioorg Med Chem. 2013;21:6910–4.

    Article  Google Scholar 

  154. Odingo J, Malley T, Kesicki EA, Alling T, Bailey MA, Early J, et al. Synthesis and evaluation of the 2,4-diaminoquinazoline series as anti-tubercular agents. Bioorg Med Chem. 2014;22:6965–79.

    Article  CAS  PubMed  Google Scholar 

  155. Xu Z, Song XF, Hu YQ, Qiang M, Lv ZS. Azide-alkyne cycloaddition towards 1H-1,2,3-triazole-tethered gatifloxacin and isatin conjugates: Design, synthesis and in vitro anti-mycobacterial evaluation. Eur J Med Chem. 2017;138:66–71.

    Article  CAS  PubMed  Google Scholar 

  156. Wang Qingfeng, Pang YU, Jing Wei, Liu Yufeng, Wang NA, Yin Hongyun, et al. Clofazimine for treatment of extensively drug-resistant pulmonary tuberculosis in China. Antimicrobial Agents Chemother. 2018;62:e02149–17. Mar

    Article  CAS  Google Scholar 

  157. Sotgiu G, Centis R, D’Ambrosio L, AlffenaarJC, Anger HA, Caminero JA, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XRD-TB: systematic review and meta-analysis. Eur Respir J. 2012;40:1430–42.

    Article  CAS  PubMed  Google Scholar 

  158. Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl Med. 2012;367:1508–18.

    Article  CAS  Google Scholar 

  159. Lorenzo SD, Alffenaar JW, Sotgiu G, D’Ambrosio RCL, Tiberi S, Bolhuis MS, et al. Effecacy and safety of meropenem/clavulanate added to linezolid containing regimens in the treatment of MDR/XDR-TB. Eur Respir J. 2013;41:1386–92.

    Article  PubMed  Google Scholar 

  160. Tiberi S, D’Ambrosio L, De Lorenzo S, Viggiani P, Centis R, Sotgiu G, et al. Ertapenem in the treatment of multidrug-resistant tuberculosis: first clinical experience. Eur Respir J. 2016;47:333–6.

    Article  CAS  PubMed  Google Scholar 

  161. Alsaad N, Altena R, Pranger AD, Soolingen D, de Lange WCM, Werf TS, et al. Evaluation of co-trimoxazole in treatment of multi-drug resistant tuberculosis. Eur Respir J. 2013;43:504–12.

    Article  Google Scholar 

  162. Nayer H, Steinbach M. Sulfanilamide in clinical tuberculosis. Am Rev Tuberc. 1939;40:470–2.

    Google Scholar 

  163. Brouqui P, Aubry C, Million M, Drancourt M, Raoult D. In vitro susceptibility of Mycobacterium tuberculosis to trimethoprim and sulfonamides in France, Totally resistant tuberculosis: will antileprosy drugs be helpful. Int J Antimicrob Agents. 2013;42:584–5.

    Article  CAS  PubMed  Google Scholar 

  164. Stephen H, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et al. Four-month Moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl J Med. 2014;371:1577–87.

    Article  Google Scholar 

  165. Maitra A, Bates S, Shaik M, Evangelopoulos D, Abubakar I, McHugh TD, et al. Repurposing drugs for treatment of tuberculosis: a role for non-steroidal anti-inflammatory drugs. Br Med Bull. 2016;118:136–48.

    Article  Google Scholar 

  166. Gold B, Pingle M, Brickner SJ, Shah N, Roberts J, Rundell M, et al. Nonsteroidal anti-inflammatory drug sensitizes Mycobacterium tuberculosis to endogenous and exogenous antimicrobials. Proc Natl Acad Sci USA. 2012;109:16004–11.

    Article  CAS  PubMed  Google Scholar 

  167. Horita Y, Takii T, Yagi T, Ogawa K, Fujiwara N, Inagaki E. Anti-tubercularactivity of disulfiram, an anti-alcoholism drug, against multi-drug and extensively drug-resistant Mycobacterium tuberculosis isolates, Antimicrob. Agents Chemother. 2012;56:4140–5.

    Article  CAS  Google Scholar 

  168. de Carvalho LP, Lin G, Jiang X, Nathan C. Nitazoxanide kills replicating and nonreplicating Mycobacterium tuberculosis and evades resistance. J Med Chem. 2009;52:5789–92.

    Article  PubMed  Google Scholar 

  169. Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE. Drug discovery using chemical systems biology: repositioning the safe medicine comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoSComput Biol. 2009;5:e1000423.

    Google Scholar 

  170. Sureram S, Senadeera SPD, Hongmanee P, Mahidol C, Ruchirawat S, Kittakoop P. Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacoratriandra against multidrug-resistant isolates of Mycobacterium tuberculosis. Bioorg Med Chem Lett. 2012;22:2902–5.

    Article  CAS  PubMed  Google Scholar 

  171. Sakai R, Higa T, Jefford CW, Bernardinelli G, Manzamine A. a novel antitumor alkaloid from a sponge. J Am Chem Soc. 1986;108:6404e6405.

    Article  Google Scholar 

  172. Kondo K, Shigemori H, Kikuchi Y, Ishibashi M, Sasaki T, Kobayashi J. Ircinals A and B from the Okinawan marine sponge Ircinia sp.: plausible biogenetic precursors of manzamine alkaloids. J Org Chem. 1992;57:2480e2483.

    Article  Google Scholar 

  173. Ichiba T, Corgiat JM, Scheuer PJ, Kelly-Borges M. 8-Hydroxymanzamine A, a,b-carboline alkaloid from a sponge, Pachypellina sp. J Nat Prod. 1994;57:168e170.

    Article  Google Scholar 

  174. Kobayashi M, Chen YJ, Aoki S, In Y, Ishida T, Kitagawa I. Marine natural products. XXXV. Four new b-carboline alkaloids isolated from two Okinawan marine sponges of Xestospongia sp. and Haliclona sp. Tetrahedron. 1995;51:3727e3736.

    Article  Google Scholar 

  175. Ichiba T, Sakai R, Kohmoto S, Saucy G, Higa T. New manzamine alkaloids from a sponge of the genus Xestospongia. Tetrahedron Lett. 1988;29:3083e3086.

    Article  Google Scholar 

  176. Kasanah N, Rao KV, Yousaf M, Wedge DE, Hamann MT. The biocatalytic conversion of 8-hydroxymanzamine A to manzamine A. Tetrahedron Lett. 2003;44:1291e1293.

    Article  Google Scholar 

  177. El Sayed KA, Kelly M, Kara UAK, Ang KKH, Katsuyama I, Dunbar DC, et al. New manzamine alkaloids with potent activity against infectious diseases. J Am Chem Soc. 2001;123:1804e1808.

    Article  Google Scholar 

  178. Tsuda M, Kawasaki N, Kobayashi J. Ircinols A and B, first antipodes of manzamine-related alkaloids from an Okinawan marine sponge. Tetrahedron. 1994;50:7957e7960.

    Article  Google Scholar 

  179. Kuete V, Ngameni B, Mbaveng AT, Ngadjui B, Meyer JJ, Lall N. Evaluation of flavonoids from Dorsteniabarteri for their antimycobacterial, antigonorrheal and anti-reverse transcriptase activities. Acta Trop. 2010;116:100–4.

    Article  CAS  PubMed  Google Scholar 

  180. Souza MVN. Promising candidates in clinical trials against multidrug-resistant tuberculosis (MDR-TB) based on natural products. Fitoterapia. 2009;80:453–60.

    Article  PubMed  Google Scholar 

  181. Rijo P, Simoes MF, Francisco AP, Rojas R, Gilman RH, Vaisberg AJ, et al. Antimycobacterial metabolites from Plectranthus: royleanone derivatives against Mycobacterium tuberculosis strains. Chem Biodiv. 2010;7:922e932.

    Article  Google Scholar 

  182. Wei X, Rodrı ´guez AD, Wang Y, Franzblau SG. Novel ring B abeo-sterols as growth inhibitors of Mycobacterium tuberculosis isolated from a Caribbean Sea sponge, Svenzeazeai. Tetrahedron Lett. 2007;48:8851–4.

    Article  CAS  Google Scholar 

  183. Wei X, Rodriguez AD, Wang Y, Franzblau SG. Synthesis and in vitro biological evaluation of ring B abeo-sterols as novel inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett. 2008;18:5448–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ibraheim ZZ, Abdel-Mageed WM, Dai HQ, Guo H, Zhang LX, Jaspars M. Antimicrobial antioxidant daucane sesquiterpenes from FerulahermonisBoiss. Phytother Res. 2011;26:579–86.

    Article  PubMed  Google Scholar 

  185. Wang JF, Dai HQ, Wei YL, Zhu HJ, Yan YM, Wang YH, et al. Antituberculosis agents and an inhibitor of the para-aminobenzoic acid biosynthetic pathway from Hydnocarpusanthelminthica seeds. Chem Biodivers. 2010;7:2046–53.

    Article  CAS  PubMed  Google Scholar 

  186. Dettrakul S, Surerum S, Rajviroongit S, Kittakoop P. Biomimetic transformation and biological activities of globiferin, a terpenoid benzoquinone from Cordiaglobifera. J Nat Prod. 2009;72:861–5.

    Article  CAS  PubMed  Google Scholar 

  187. Takahashi Y, Igarashi M, Miyake T, Soutome H, Ishikawa K, Komatsuki Y, et al. Novel semisynthetic antibiotics from caprazamycins A–G: caprazene derivatives and their antibacterial activity. J Antibiot. 2013;66:171–8.

    Article  CAS  Google Scholar 

  188. Igarashi M, Takahashi Y, Shitara T, Nakamura H, Naganawa H, Miyake T, et al. Caprazamycins, novel lipo-nucleoside antibiotics, from Streptomyces sp. II. Structure Elucidation of Caprazamycins. J Antibiot. 2005;58:327–37.

    Article  CAS  Google Scholar 

  189. Igarash M, Nakagawa N, Doi N, Hattori S, Naganawa H, Hamada M, et al. A novel anti-tuberculosis antibiotic, from Streptomyces sp. J Antibiot. 2003;56:580–3.

    Article  Google Scholar 

  190. Ishizaki Y, Hayashi C, Inoue K, Igarashi M, Takahashi Y, Pujari V, et al. Inhibition of the first step in synthesis of the mycobacterial cell wall core, catalyzed by the GlcNAc-1-phosphate transferase WecA, by the novel caprazamycin derivative CPZEN-45. J Biol Chem. 2013;288:30309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. http://www.newtbdrugs.org/pipeline/compound/cpzen-45 (working on drug stop TB partnership) Accessed Nov 2019).

  192. https://www.tballiance.org/portfolio/compound/cyclopeptides Accessed Nov 2019).

  193. Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S, et al. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science. 2015;348:1106.

    Article  CAS  PubMed  Google Scholar 

  194. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis,. Science. 1994;263:227–30.

    Article  CAS  PubMed  Google Scholar 

  195. Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev. 2005;18:81–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Zhang Y, Heym B, Allen B, Young D, Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992;358:591–3.

    Article  CAS  PubMed  Google Scholar 

  197. Mikusová K, Slayden RA, Besra GS, Brennan PJ. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents Chemother. 1995;39:2484–9.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Telenti A, Philipp WJ, Sreevatsan S. Theemb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med. 1997;3:567–70.

    Article  CAS  PubMed  Google Scholar 

  199. Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2009;13:1320–30.

    CAS  PubMed  Google Scholar 

  200. Zhang N, Torrelles JB, McNeil MR. The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan and arabinogalactan via an N-terminal recognition region and a C-terminal synthetic region. Mol Microbiol. 2003;50:69–76.

    Article  CAS  PubMed  Google Scholar 

  201. Berg S, Starbuck J, Torrelles JB. Roles of conserved proline and glycosyltransferase motifs of EmbC in biosynthesis of lipoarabinomannan. J Biol Chem. 2005;280:5651–63.

    Article  CAS  PubMed  Google Scholar 

  202. Goude R, Amin AG, Chatterjee D, Parish T. The critical role of embC in Mycobacterium tuberculosis. J Bacteriol. 2008;190:4335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Escuyer VE, Lety MA, Torrelles JB. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J Biol Chem. 2001;276:48854–62.

    Article  CAS  PubMed  Google Scholar 

  204. Amin AG, Goude R, Shi L, Zhang J, Chatterjee D, Parish T. EmbA is an essential arabinosyltransferase in Mycobacterium tuberculosis. Microbiol (Read, Engl). 2008;154:240–8.

    Article  CAS  Google Scholar 

  205. Bhamidi S, Scherman MS, Rithner CD, Prenni JE, Chatterjee D, Khoo KH, et al. The identification and location of succinyl residues and the characterization of the interior arabinan region allow for a model of the complete primary structure of Mycobacterium tuberculosismycolyl arabinogalactan. J Biol Chem. 2008;283:12992–13000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lee RE, Protopopova M, Crooks E, Slayden RA, Terrot M, Barry CE 3rd. Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J Comb Chem. 2003;5:172–87.

    Article  CAS  PubMed  Google Scholar 

  207. Protopopova M, Hanrahan C, Nikonenko B, Samala R, Chen P, Gearhart J, et al. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J Antimicrob Chemother. 2005;56:968–74.

    Article  CAS  PubMed  Google Scholar 

  208. Nikonenko BV, Protopopova M, Samala R, Einck L, Nacy CA. Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother. 2007;51:1563–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Jia L, Noker PE, Coward L, Gorman GS, Protopopova M, Tomaszewski JE. Interspecies pharmacokinetics and in vitro metabolism of SQ109. Br J Pharmacol. 2006;147:476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jia L, Tomaszewski JE, Hanrahan C, Coward L, Noker P, Gorman G, et al. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br J Pharmacol. 2005;144:80–87.

    Article  CAS  PubMed  Google Scholar 

  211. Tahlan K, Wilson R, Kastrinsky DB, Arora K, nair V, Fisher E, et al. SQ109 targets MmpL3, a membrane transporter of trehalosemonomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012;56:1797–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Batt SM, Jabeen T, Bhowruth V, Quill L, Lund PA, Eggeling L, et al. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc Natl Acad Sci USA. 2012;109:11354–9.

    Article  CAS  PubMed  Google Scholar 

  213. Zhang B, Li J, Yang X, Wu L, Zhang J, Yang Y, et al. Crystal structures of membrane transporter MmpL3, an Anti-TB Drug Target. Cell. 2019;176:636–48.e13.

    Article  CAS  PubMed  Google Scholar 

  214. McMahon MD, Rush JS, Thomas MG. Analyses of MbtB, MbtE, and MbtF suggest revisions to the mycobactin biosynthesis pathway in Mycobacterium tuberculosis. J Bacteriol 2012;194:2809–2818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Neres J, Pojer F, Molteni E, Chiarelli LR, Dhar N, Boy-Rottger S, et al. Structural basis for benzothiazinone-mediated killing of Mycobacterium tuberculosis. Sci Transl Med. 2012;4:150ra121.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Stanley SA, Kawate T, Iwase N, Shimizu M, Clatworthy AE, Kazyanskaya E, et al. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32. Proc Natl Acad Sci USA. 2013;110:11565–70.

    Article  CAS  PubMed  Google Scholar 

  217. Wilson R, Kumar P, Parashar V, Vilchèze C, Churlet RV, Freundlich JS, et al. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat Chem Biol. 2013;9:499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D, Gokhale RS. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature. 2004;428:441–5.

    Article  CAS  PubMed  Google Scholar 

  219. Portevin D, de Sousa-D’Auria C, Montrozier H, Houssin C, Stella A, Laneelle MA, et al. The acyl-AMP ligase FadD32 and AccD4-containing acylCoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem. 2005;280:8862–74.

    Article  CAS  PubMed  Google Scholar 

  220. Leger M, Gavalda S, Guillet V, van der Rest B, Slama N, Montrozier H, et al. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis. Chem Biol. 2009;16:510–9.

    Article  CAS  PubMed  Google Scholar 

  221. Brotz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W, et al. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med. 2005;11:1082–7.

    Article  PubMed  Google Scholar 

  222. Ollinger J, O’Malley T, Kesicki EA, Odingo J, Parish T. Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. J Bacteriol. 2012;194:663–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kirstein J, Hoffmann A, Lilie H, Schmidt R, Rubssamen-Waigmann H, Brotz-Oesterhelt H, et al. The antibiotic ADEP reprogrammesClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med. 2009;1:37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. McKinney JD, HonerzuBentrup K, Munoz-Elıas EJ, Miczak A, Chen B, Chan WT, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000;406:735–8.

    Article  CAS  PubMed  Google Scholar 

  225. Munoz-Elıas EJ, McKinney JD. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med. 2005;11:638–44.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Timm J, Post FA, Bekker LG, Walther GB, Wainwright HC, Manganelli R, et al. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA. 2003;100:14321–6.

    Article  CAS  PubMed  Google Scholar 

  227. Munoz-Elıas EJ, Upton AM, Cherian J, McKinney JD. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol. 2006;60:1109–22.

    Article  PubMed  Google Scholar 

  228. Gould TA, van de Langemheen H, Munoz-Elıas EJ, McKinney JD, Sacchettini JC. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis,. Mol Microbiol. 2006;61:940–7.

    Article  CAS  PubMed  Google Scholar 

  229. Gengenbacher M, Rao SP, Pethe K, Dick T. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology. 2010;156:81–87.

    Article  CAS  PubMed  Google Scholar 

  230. Eoh H, Rhee KY. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2013;110:6554–9.

    Article  CAS  PubMed  Google Scholar 

  231. Bentrup HZ, Miczak KA, Swenson DL, Russell DG. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J Bacteriol. 1999;181:7161–7.

    Article  CAS  Google Scholar 

  232. Smith CV, Huang CC, Miczak A, Russell DG, Sacchettini JC, HonerzuBentrup K. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem. 2003;278:1735–43.

    Article  CAS  PubMed  Google Scholar 

  233. Abrahams GL, Kumar A, Savvi S, Hung AW, Wen S, Abell C, et al. Pathwayselective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening. Chem Biol. 2012;19:844–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Krieger IV, Freundlich JS, Gawandi VB, Roberts JP, Gawandi VB, Sun Q, et al. Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. tuberculosis malate synthase. Chem Biol. 2012;19:1556–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Dhiman RK, Mahapatra S, Slayden RA, Boyne ME, Lenaerts A, Hinshaw JC, et al. Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol. 2009;72:85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kurosu M, Crick DC. MenA is a promising drug target for developing novel lead molecules to combat Mycobacterium tuberculosis. Med Chem. 2009;5:197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Li X, Liu N, Zhang H, Knudson SE, Li H-J, Lai C-T, et al. CoA adducts of 4- Oxo-4-Phenylbut-2-enoates: inhibitors of MenB from the M. tuberculosis Menaquinone Biosynthesis Pathway. ACS Med Chem Lett. 2011;2:818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Debnath J, Siricilla S, Wan B, Crick DC, Lenaerts AJ, Franzblau SG, et al. Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. J Med Chem. 2012;55:3739–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kurosu M, Narayanasamy P, Biswas K, Dhiman R, Crick DC. Discovery of 1,4-dihydroxy-2-naphthoate prenyltransferase inhibitors: new drug leads for multidrug-resistant Gram positive pathogens. J Med Chem. 2007;50:3973–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, et al. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-Succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Chembiochem. 2012;13:129–36.

    Article  CAS  PubMed  Google Scholar 

  241. Sander P, Rezwan M, Walker B, Rampini SK, Kroppenstedt RM, Ehler S, et al. Lipoprotein processing is required for virulence of Mycobacterium tuberculosis. Mol Microbiol. 2004;52:1543–52.

    Article  CAS  PubMed  Google Scholar 

  242. Sukheja P, Kumar P, Mittal N, Li S-G, Singleton E, Russo R, et al. Small-mol inhibitor mycobacterium tuberculosis demethylmenaquinone methyltransferase meng is bactericidal both grow nutritionally deprived persister cells. mBio. 2017;8:e02022–16.175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Rampini SK, Selchow P, Keller C, Ehlers S, Bottger EC, Sander P. LspA inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest. Microbiology. 2008;154(Pt 10):2991–3001.

  244. Braunstein M, Brown AM, Kurtz S, Jacobs WR. Two nonredundant SecA homologues function in mycobacteria. J Bacteriol. 2001;183:6979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Guo XV, Monteleone M, Klotzsche M, Kamionka A, Hillen W, Braunstein M, et al. Silencing essential protein secretion in Mycobacterium smegmatis using tetracycline repressors. J Bacteriol. 2007;189:4614–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Sassetti CM, Boyd DH, Rubin EJ. Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA. 2001;98:12712–7.

    Article  CAS  PubMed  Google Scholar 

  247. Romberg L, Levin PA. Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu Rev Microbiol. 2003;57:125–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Sticker JMP, Salmon ED, Erickson PH. Rapid assembly dynamics of the Escherichia coli. FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci USA. 2002;99:3171–5.

    Article  Google Scholar 

  249. Kumar K, Awasthi D, Berger WT, Tonge PJ, Slayden RA, Ojima I. Discovery of anti-TB agents that target the cell-division protein FtsZ. Future Med Chem. 2010;2:1305–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Slayden RA, Knudson DL, Belisle JT. Identification of cell cycle regulators in Mycobacterium tuberculosis by inhibition of septum formation and global transcriptional analysis. Microbiology. 2006;152:1789–97.

    Article  CAS  PubMed  Google Scholar 

  251. Sarcina M, Mullineaux CW. Effects of tubulin assembly inhibitors on cell division in prokaryotes in vivo. FEMS Microbiol Lett. 2000;191:25–29.

    Article  CAS  PubMed  Google Scholar 

  252. Kumar K, Awasthi D, Lee SY, Zanardi I, Ruzsicska B, Knudson S, et al. Novel trisubstituted benzimidazoles, targeting MtbFtsZ, as a new class of antitubercular agents. J Med Chem. 2011;54:374–81.

    Article  CAS  PubMed  Google Scholar 

  253. Mathew Bini, VaradyHobrath Judith, Ross Larry, Connelly MicheleC, Lofton Hava, Rajagopalan Malini, et al. Reynolds, screening and development of new inhibitors of FtsZ from M. Tuberculosis. PLOS ONE. 2016;11:e0164100.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Lin Y, Zhu N, Han Y, Jiang J, Si S. Identification of anti-tuberculosis agents that target the cell-division protein FtsZ. J Antibiotics. 2014;67:671–6.

    Article  CAS  Google Scholar 

  255. Wells RM, Jones CM, Xi Z, Speer A, Danilchanka O, Doornbos KS, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoSPathog 2013;9:e1003120.

    CAS  Google Scholar 

  256. Siegrist MS, Bertozzi CR. Mycobacterial Lipid Logic. Cell Host Microbe. 2014;15:1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Tufariello JM, Chapman JR, Kerantzas CA, Wong KW, Vilcheze C, Jones CM, et al. Separable roles for Mycobacterium tuberculosis Esx-3 effectors in iron acquisition and virulence. Proc Natl Acad Sci USA 2016;113:E348–357.

    Article  CAS  PubMed  Google Scholar 

  258. Chao A, Sieminski PJ, Owens CP, Goulding CW. Iron acquisition in Mycobacterium tuberculosis. Chem Rev. 2019;119:1193–1220.

    Article  CAS  PubMed  Google Scholar 

  259. Rodriguez GM, Smith I. Identification of an Abc transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol. 2006;188:424–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I. Ider, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun. 2002;70:3371–3381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Farhana A, Kumar S, Rathore SS, Ghosh PC, Ehtesham NZ, Tyagi AK, et al. Mechanistic Insights into a Novel Exporter-Importer System of Mycobacterium tuberculosis Unravel Its Role in Trafficking of Iron. PLoS ONE. 2008;3:e2087.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Fetherston JD, Bertolino VJ, Perry RD. Ybtp and Ybtq: Two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol. 1999;32:289–299.

    Article  CAS  PubMed  Google Scholar 

  263. Darwin KH, Ehrt S, Gutierrez-Ramos J-C, Weich N, Nathan CF. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science. 2003;302:1963–6.

    Article  CAS  PubMed  Google Scholar 

  264. Lin G, Li D, de Carvalho LP, Deng H, Tao H, Vogt G, et al. Inhibitors selective for mycobacterial versus human proteasomes. Nature. 2009;461:621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Cerda-Maira F, Darwin KH. The Mycobacterium tuberculosis proteasome: More than just a barrel-shaped protease. Microb Infect 2009;11:1150–5. (a)(b) Gandotra S, Lebron MB, Ehrt S. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoSPathog. 2010;6:e1001040

    Article  CAS  Google Scholar 

  266. Zheng Y, Jiang X, Gao F, Song J, Sun J, Wang L, et al. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC Complement Altern Med. 2014;14:400.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z, Phenolic compounds as promising drug candidates in tuberculosis therapy, Molecules, 2019;24:2449.

  268. Chao A, Sieminski PJ, Owens CP, Goulding CW. Iron Acquisition in Mycobacterium tuberculosis. Chem Rev 2019;119:1193–1220.

    Article  CAS  PubMed  Google Scholar 

  269. Mabhulaab A, Singh V. Drug-resistance in Mycobacterium tuberculosis: where we stand. Med Chem Commun. 2019;10:1342–60.

    Article  Google Scholar 

  270. Lamour V, Hoermann L, Jeltsch JM, Oudet P, Moras DJ. An open conformation of the Thermus thermophilus gyrase B ATP-binding domain. Biol Chem. 2002;277:18947.

    Article  CAS  Google Scholar 

  271. Hoeksema H, Johnson JL, Hinman JW. Structural studies on streptonivicin,1 a new antibiotic. J Am Chem Soc. 1955;78:6710.

    Article  Google Scholar 

  272. Gellert M, O’Dea MH, Itoh T, Tomizawa J. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc Natl Acad Sci USA. 1976;73:4474–8.

    Article  CAS  PubMed  Google Scholar 

  273. Reddy PV, Puri RV, Chauhan P, Kar R, Rohilla A, Khera A, et al. Disruption of mycobactin biosynthesis leads to attenuation of Mycobacterium tuberculosis for growth and virulence. J Infect Dis. 2013;208:1255–126.

    Article  CAS  PubMed  Google Scholar 

  274. Ioerger TR, O’Malley T, Liao R, Guinn KM, Hickey MJ, Mohaideen N, et al. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS ONE. 2013;8:e75245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Panda S, Tiwari A, Luthra K, Sharma SK, Singh A. Association of Fok1 VDR polymorphism with Vitamin D and its associated molecules in pulmonary tuberculosis patients and their household contacts. Sci Rep. 2019;9:15251.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

One of the authors PB wishes to thank AICTE for the grant of fellowship for M.Pharm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Kashaw.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, P., Harit, A.K., Das, R. et al. Tuberculosis: current scenario, drug targets, and future prospects. Med Chem Res 30, 807–833 (2021). https://doi.org/10.1007/s00044-020-02691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02691-5

Keywords

Navigation