Skip to main content
Log in

Study on the adsorption of strontium on granular manganese oxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A number of optimal parameters determining the efficiency and rate of the strontium removal by a granular sorbent synthesized by the interaction of KMnO4 and concentrated H2O2 solution have been determined. The optimal drying temperature was found to be 400 °C at an average grain size of 0.1–0.2 mm. The average value of the strontium distribution coefficient in seawater equaled to 1.4–1.5 × 103 mL/g at the V/m ratio of 1000 mL/g ratio. The maximum value of adsorption in a single-component solution calculated using the Langmuir equation was equal to 1.0–1.1 mmol/g and corresponded to total dynamic exchange capacity. As the number of sorption-desorption cycles increased, total dynamic exchange capacity gradually decreased. The efficiency of Sr-90 removal from real liquid radioactive waste streams has been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang X, Chen T, Zou X, Zhu M, Chen D, Pan M (2017) The adsorption of Cd(II) on manganese oxide investigated by batch and modeling techniques. Int J Environ Res Public Health 14:1145

    Article  PubMed Central  Google Scholar 

  2. Chaudhry SA, Khan TA, Ali I (2017) Equilibrium, kinetic and thermodynamic studies of Cr(VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J Mol Liq 236:320–330

    Article  CAS  Google Scholar 

  3. Della Puppa L, Komárek M, Bordas F, Bollinger J-C, Joussein E (2013) Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J Colloid Interface Sci 399:99–106

    Article  CAS  PubMed  Google Scholar 

  4. Kim G, Sim K, Kim S, Komarneni S, Cho Y (2018) Selective sorption of strontium using two different types of nanostructured manganese oxides. J Porous Mater 25:321–328

    Article  CAS  Google Scholar 

  5. Pan N, Li L, Ding J, Li S, Wang R, Jin Y, Wang X, Xia C (2016) Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI). J Hazard Mater 309:107–115

    Article  CAS  PubMed  Google Scholar 

  6. Voronina AV, Semenishchev VS, Gupta DK (2020) Use of sorption method for strontium removal. In: Pathak P, Gupta DK (eds) Strontium contamination in the environment. Springer International Publishing, Cham, pp 203–226

    Chapter  Google Scholar 

  7. Sofronov D, Krasnopyorova A, Efimova N, Oreshina A, Bryleva E, Yuhno G, Lavrynenko S, Rucki M (2019) Extraction of radionuclides of cerium, europium, cobalt and strontium with Mn3O4, MnO2, and MnOOH sorbents. Process Saf Environ Prot 125:157–163

    Article  CAS  Google Scholar 

  8. Ivanets AI, Milyutin VV, Prozorovich VG, Kuznetsova TF, Petrovskaya AO, Nekrasova NA (2019) Sorption of 90Sr onto manganese oxides prepared in aqueous-ethanol media. Radiochemistry 61:707–713

    Article  CAS  Google Scholar 

  9. Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Krivoshapkin PV, Krivoshapkina EF, Sillanpää M (2018) Sorption behavior of 85Sr onto manganese oxides with tunnel structure. J Radioanal Nucl Chem 316:673–683

    Article  CAS  Google Scholar 

  10. Ivanets AI, Milutin VV, Prozorovich VG, Kouznetsova TF, Nekrasova NA (2019) Adsorption properties of manganese oxides prepared in aqueous-ethanol medium toward Sr(II) ions. J Radioanal Nucl Chem 321:243–253

    Article  CAS  Google Scholar 

  11. Ivanets AI, Kuznetsova TF, Prozorovich VG (2015) Sol–gel synthesis and adsorption properties of mesoporous manganese oxide. Russ J Phys Chem A 89:481–486

    Article  CAS  Google Scholar 

  12. Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Zarubo AM (2016) Mesoporous manganese oxides prepared by sol–gel method: synthesis, characterization and sorption properties towards strontium ions. Environ Nanotechnol Monit Manag 6:261–269

    Google Scholar 

  13. Ling FT, Post JE, Heaney PJ, Kubicki JD, Santelli CM (2017) Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites. Spectrochim Acta Part A Mol Biomol Spectrosc 178:32–46

    Article  CAS  Google Scholar 

  14. Gaillot A-C, Lanson B, Drits VA (2005) Structure of birnessite obtained from decomposition of permanganate under soft hydrothermal conditions. 1. Chemical and structural evolution as a function of temperature. Chem Mater 17:2959–2975

    Article  CAS  Google Scholar 

  15. Lanson B, Drits VA, Feng Q, Manceau A (2002) Structure of synthetic Na-birnessite: evidence for a triclinic one-layer unit cell. Am Miner 87:1662–1671

    Article  CAS  Google Scholar 

  16. Bondar YuV, Alekseev SA (2020) Synthesis and evaluation of manganese dioxide with layered structure as an adsorbent for selective removal of strontium ions from aqueous solution. SN Applied Sciences 2:1379

    Article  CAS  Google Scholar 

  17. Karaseva ON, Ivanova LI, Lakshtanov LZ (2019) Strontium adsorption on manganese oxide (δ-MnO2) at elevated temperatures: experiment and modeling. Geochem Int 57:1107–1119

    Article  CAS  Google Scholar 

  18. Ghaly M, El-Dars FMSE, Hegazy MM, Abdel Rahman RO (2016) Evaluation of synthetic birnessite utilization as a sorbent for cobalt and strontium removal from aqueous solution. Chem Eng J 284:1373–1385

    Article  CAS  Google Scholar 

  19. Metwally SS, Ghaly M, El-Sherief EA (2017) Physicochemical properties of synthetic nano-birnessite and its enhanced scavenging of Co2+ and Sr2+ ions from aqueous solutions. Mater Chem Phys 193:63–72

    Article  CAS  Google Scholar 

  20. Chakravarty R, Bevara S, Bahadur J, Chakraborty S, Sarma HD, Achary SN, Dash A, Tyagi AK (2018) Birnessite: a new-generation and cost effective ion exchange material for separation of clinical-grade 90Y from 90Sr/90Y mixture. ChemistrySelect 3:10670–10676

    Article  CAS  Google Scholar 

  21. Dyer A, Pillinger M, Newton J, Harjula R, Möller T, Amin S (2000) Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chem Mater 12:3798–3804

    Article  CAS  Google Scholar 

  22. Ghaeni N, Taleshi MS, Elmi F (2019) Removal and recovery of strontium (Sr(II)) from seawater by Fe3O4/MnO2/fulvic acid nanocomposite. Mar Chem 213:33–39

    Article  CAS  Google Scholar 

  23. Ryu J, Hong J, Park I-S, Ryu T, Hong H-J (2020) Recovery of strontium (Sr2+) from seawater using a hierarchically structured MnO2/C/Fe3O4 magnetic nanocomposite. Hydrometallurgy 191:105224

    Article  CAS  Google Scholar 

  24. Valsala TP, Joseph A, Sonar NL, Sonavane MS, Shah JG, Raj K, Venugopal V (2010) Separation of strontium from low level radioactive waste solutions using hydrous manganese dioxide composite materials. J Nucl Mater 404:138–143

    Article  CAS  Google Scholar 

  25. Sadeghi M, Yekta S, Ghaedi H, Babanezhad E (2017) MnO2 NPs-AgX zeolite composite as adsorbent for removal of strontium-90 (90Sr) from water samples: kinetics and thermodynamic reactions study. Mater Chem Phys 197:113–122

    Article  CAS  Google Scholar 

  26. Egorin A, Sokolnitskaya T, Azarova Y, Portnyagin A, Balanov M, Misko D, Shelestyuk E, Kalashnikova A, Tokar E, Tananaev I, Avramenko V (2018) Investigation of Sr uptake by birnessite-type sorbents from seawater. J Radioanal Nucl Chem 317:243–251

    Article  CAS  Google Scholar 

  27. Altomare A, Corriero N, Cuocci C, Falcicchio A, Moliterni A, Rizzi R (2015) QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD. J Appl Crystallogr 48:598–603

    Article  CAS  Google Scholar 

  28. Bevara S, Giri P, Achary SN, Bhallerao G, Mishra RK, Kumar A, Kaushik CP, Tyagi AK (2018) Synthetic Na/K-birnessite for efficient management of Sr(II) from nuclear waste. J Environ Chem Eng 6:7200–7213

    Article  CAS  Google Scholar 

  29. Kielland J (1937) Individual activity coefficients of ions in aqueous solutions. J Am Chem Soc 59:1675–1678

    Article  CAS  Google Scholar 

  30. Drits VA, Silvester E, Gorshkov AI, Manceau A (1997) Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite; I. Results from X-ray diffraction and selected-area electron diffraction. Am Miner 82:946–961

    Article  CAS  Google Scholar 

  31. Avramenko VA, Zheleznov VV, Kaplun EV, Sokol’nitskaya TA, Yukhkam AA (2001) Sorption recovery of strontium from seawater. Radiochemistry 43:433–436

    Article  CAS  Google Scholar 

  32. Avramenko VA, Sergienko VI, Sokol’nitskaya TA (2016) Application of sorption-reagent materials in the technology of liquid radioactive waste treatment. Theor Found Chem Eng 50:593–597

    Article  CAS  Google Scholar 

  33. Ivanets AI, Katsoshvili LL, Krivoshapkin PV, Prozorovich VG, Kuznetsova TF, Krivoshapkina EF, Radkevich AV, Zarubo AM (2017) Sorption of strontium ions onto mesoporous manganese oxide of OMS-2 type. Radiochemistry 59:264–271

    Article  CAS  Google Scholar 

  34. Voronina AV, Noskova AY, Semenishchev VS, Gupta DK (2020) Decontamination of seawater from 137Cs and 90Sr radionuclides using inorganic sorbents. J Environ Radioact 217:106210

    Article  CAS  PubMed  Google Scholar 

  35. Nur T, Loganathan P, Kandasamy J, Vigneswaran S (2017) Removal of strontium from aqueous solutions and synthetic seawater using resorcinol formaldehyde polycondensate resin. Desalination 420:283–291

    Article  CAS  Google Scholar 

  36. Milyutin VV, Nekrasova NA, Yanicheva NY, Kalashnikova GO, Ganicheva YY (2017) Sorption of cesium and strontium radionuclides onto crystalline alkali metal titanosilicates. Radiochemistry 59:65–69

    Article  CAS  Google Scholar 

  37. Sylvester P, Clearfield A (1998) The removal of strontium and cesium from simulated hanford groundwater using inorganic ion exchange materials. Solv Extr Ion Exchange 16:1527–1539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Synthesis of the materials and investigations of their sorption properties were carried out under the partial financial support from Russian Foundation for Basic Research (Project No. 18-03-00407). In addition, developing the methods of analytical determination of precise radionuclide quantities in the solutions after selective sorption and in the bulk of the sorption matrices was partially supported within the frames of the State Order of the Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences (Project No. 0205-2019-0005). Equipment Far Eastern Center of Structural Investigations was used in the present work. SEM studies were performed with the support of the Far Eastern Center for Electron Microscopy located in the Zhirmunsky National Scientific Center of Marine Biology of the Far Eastern branch of the Russian Academy of Sciences (Vladivostok, Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Egorin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matskevich, A.I., Tokar’, E.A., Ivanov, N.P. et al. Study on the adsorption of strontium on granular manganese oxide. J Radioanal Nucl Chem 327, 1005–1017 (2021). https://doi.org/10.1007/s10967-020-07580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07580-0

Keywords

Navigation