Skip to main content
Log in

The study of radium and polonium sorption by a thin-layer MnO2-CTA sorbent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The work focuses on sorption of radium-223 and polonium-210 by a thin-layer MnO2-CTA sorbent. The maximal sorption of Ra (≈ 80%) and Po (≈ 12%) was achieved after 1 day of sorption. For Ra, decrease of quality of alpha spectrum was observed during sorption that can be explained by its diffusion into MnO2 and support layers. The average thickness of the sorption layer was determined to be 456 nm, whereas the energy loss of 5 MeV α-particles in MnO2 is approximately 270 keV μm−1. Scanning electronic microscopy and optical microphotographs confirmed flat morphology of the sorbent’s surface and no morphology changes as a result of sorption. In contrast to radium, the values of full width at half maximum (FWHM) of the 210Po alpha peak just slightly increased from ≈ 40 to ≈ 80 keV after 2 weeks of sorption that can be explained by larger ionic radius of polonium and another sorption mechanism, which is probably a partial replacement of manganese by polonium in the manganese dioxide crystal lattice. The observed phenomenon of increasing FWHM of alpha peaks from flat sorbents was suggested as an instrument for study the diffusion of alpha emitters in flat sorption-active layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ajith N, Swain KK (2019) An ultrasound assisted reductive method for preparation of MnO2: modification of XAD and application in removal of arsenic. Sep Sci Technol 55(9):1715–1723

    Article  Google Scholar 

  2. Shima J, Kumar M, Mukherjee S, Goswami R (2019) Sustainable removal of pernicious arsenic and cadmium by a novel composite of MnO2 impregnated alginate beads: a cost-effective approach for wastewater treatment. J Environ Manag 234:8–20

    Article  Google Scholar 

  3. Yang C, Zhong Y, Li L, Ren X, Sun Y, Niu D, Liu Y, Yin M, Zhang D (2018) Lead and uranium sorption characteristics on hydrothermal synthesized delta manganese dioxide. J Radioanal Nucl Chem 317:1399–1408

    Article  CAS  Google Scholar 

  4. Zuba I, Polkowska-Motrenko H (2019) Application of MnO2 Resin and Dowex 1X8 manganese dioxide impregnated resin for the separation of chromium from biological samples. J Radioanal Nucl Chem 322:969–974

    Article  CAS  Google Scholar 

  5. Yang C, Niu D, Zhong Y, Li L, Lv H, Yang L (2018) Adsorption of uranium by hydrous manganese dioxide from aqueous solution. J Radioanal Nucl Chem 315:533–542

    Article  CAS  Google Scholar 

  6. Ohnuki T, Kozai N (1995) Sorption behavior of cobalt on manganese dioxide, smectite and their mixture. Radiochim Acta 68:203–207

    Article  CAS  Google Scholar 

  7. Al Lafi AG, Al Abdullah J, Amin Y, Alnama T, Aljbai Y, Hasan R, Alsayes G (2019) Sulfonated poly(ether ether ketone)/manganese dioxide composite for the removal of low level radionuclide ions from aqueous solution. J Radioanal Nucl Chem 321:463–472

    Article  CAS  Google Scholar 

  8. Egorin A, Sokolnitskaya T, Azarova Y, Portnyagin A, Balanov M, Misko D, Shelestyuk E, Kalashnikova A, Tokar E, Tananaev I, Avramenko V (2018) Investigation of Sr uptake by birnessite-type sorbents from seawater. J Radioanal Nucl Chem 317:243–251

    Article  CAS  Google Scholar 

  9. Koulouris G (1996) Sorption and distribution of 226Ra in an electrolytic manganese dioxide column in the presence of other ions. J Radioanal Nucl Chem Lett 212(2):131–141

    Article  CAS  Google Scholar 

  10. Sidle WC, Shanklin D, Lee PY, Roose DL (2001) 226Ra and 228Ra activities associated with agricultural drainage ponds. J Environ Radioact 55:29–46

    Article  CAS  Google Scholar 

  11. Eikenberg J, Bajo S, Beer H, Hitz J, Ruethi M, Zumsteg I, Letessier P (2004) Fast methods for determination of anthropogenic actinides and U/Th-series isotopes in aqueous samples. Appl Radiat Isot 61(2–3):101–106

    Article  CAS  Google Scholar 

  12. Moon DS, Burnett WC, Nour S, Horwitz P, Bond A (2003) Preconcentration of radium isotopes from natural waters using MnO2 Resin. Appl Radiat Isot 59:255–262

    Article  CAS  Google Scholar 

  13. Kamran U, Heo Y-J, Lee JW, Park S-J (2019) Chemically modified activated carbon decorated with MnO2 nanocomposites for improving lithium adsorption and recovery from aqueous media. J Alloys Compd 794:425–434

    Article  CAS  Google Scholar 

  14. Chaban MO, Rozhdestvenska LM, Palchyk OV, Dzyazko YS, Dzyazko OG (2019) Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2. Appl Nanosci 9:1037–1045

    Article  CAS  Google Scholar 

  15. Wu S, Xie M, Zhang Q, Zhong L, Chen M, Huang Z (2017) Isopentyl-sulfide-impregnated nano-MnO2 for the selective sorption of Pd(II) from the leaching liquor of ores. Molecules 22:1117

    Article  Google Scholar 

  16. Shen Q, Wang Z, Yu Q, Cheng Y, Liu Z, Zhang T, Zhou S (2020) Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues. Environ Res 183:109195

    Article  CAS  Google Scholar 

  17. Ivanets AI, Katsoshvili LL, Krivoshapkin PV, Prozorovich VG, Kuznetsova TF, Krivoshapkina EF, Radkevich AV, Zarubo AM (2017) Sorption of strontium ions onto mesoporous manganese oxide of OMS-2 type. Radiochemistry 59:264–271

    Article  CAS  Google Scholar 

  18. White DA, Labayru R (1991) Synthesis of a manganese dioxide silica hydrous composite and its properties as a sorption material for strontium. Ind Eng Chem Res 30:207–210

    Article  CAS  Google Scholar 

  19. Hong H-J, Kim B-G, Hong J, Ryu J, Ryu T, Chung K-S, Kim H, Park I-S (2017) Enhanced Sr adsorption performance of MnO2-alginate beads in seawater and evaluation of its mechanism. Chem Eng J 319:163–169

    Article  CAS  Google Scholar 

  20. Valsala TP, Joseph A, Sonar NL, Sonavane MS, Shah JG, Raj K, Venugopal V (2010) Separation of strontium from low level radioactive waste solutions using hydrous manganese dioxide composite materials. J Nucl Mater 404:138–143

    Article  CAS  Google Scholar 

  21. Rao SVS, Mani AGS, Karua S, Cheralathan M, Reddy A, Khandelwal SK, Paul B (2016) Treatment of liquid wastes using composite resins. J Radioanal Nucl Chem 307:463–469

    Article  CAS  Google Scholar 

  22. Veleshko AN, Kulyukhin SA, Veleshko IE, Domantovskii AG, Rozanov KV, Kislova IA (2008) Sorption of radionuclides from solutions with composite materials based on Mikoton natural biopolymer. Radiochemistry 50:508–514

    Article  CAS  Google Scholar 

  23. Yang Z, Chen J, Yang K, Zhang Q, Zhang B (2020) Preparation of BSA surface imprinted manganese dioxide-loaded tubular carbon fibers with excellent specific rebinding to target protein. J Colloid Interface Sci 570:182–196

    Article  CAS  Google Scholar 

  24. Surbeck H (2000) Alpha spectrometry sample preparation using selectively adsorbing thin films. Appl Radiat Isot 53:97–100

    Article  CAS  Google Scholar 

  25. Eikenberg J, Tricca A, Vezzu G, Bajo S, Ruethi M, Surbeck H (2001) Determination of 228Ra, 226Ra and 224Ra in natural water via adsorption on MnO2-coated discs. J Environ Radioact 54:109–131

    Article  CAS  Google Scholar 

  26. Karamanis D, Ioannides KG, Stamoulis KC (2006) Determination of 226Ra in aqueous solutions via sorption on thin films and α-spectrometry. Anal Chim Acta 573–574:319–327

    Article  Google Scholar 

  27. Maxwell SL III (2006) Rapid method for 226Ra and 228Ra analysis in water samples. J Radioanal Nucl Chem 270(3):651–655

    Article  CAS  Google Scholar 

  28. Maxwell SL, Culligan BK, Utsey RC, McAlister DR, Horwitz EP (2013) Rapid method for determination of 228Ra in water samples. J Radioanal Nucl Chem 295:2181–2188

    Article  CAS  Google Scholar 

  29. Van Es EM, Russell BC, Ivanov P, Garcıa Miranda M, Read D, Dirks C, Happel S (2017) The behaviour of 226Ra in high-volume environmental water samples on TK100 resin. J Radioanal Nucl Chem 312:105–110

    Article  Google Scholar 

  30. Medley P, Martin P, Bollhöfer A, Parry D (2015) 228Ra and 226Ra measurement on a BaSO4 co-precipitation source. Appl Radiat Isot 95:200–207

    Article  CAS  Google Scholar 

  31. Semenishchev VS, Betenekov ND, Tomashova LA, Voronina AV (2017) Determination of Ra-224 and Ra-226 in drinking waters. AIP Conf Proc 1886:020061

    Article  Google Scholar 

  32. Rychkov VN, Semenishchev VS, Kirillov EV, Kirillov SV, Ryabukhina VG, Smyshlyaev DV, Bunkov GM, Botalov MS (2018) Radiochemical characterization and decontamination of rare-earth-element concentrate recovered from uranium leach liquors. J Radioanal Nucl Chem 317(1):203–213

    Article  CAS  Google Scholar 

  33. Fan F, Liu H, Liang J, Sun H, Zhang J, Pan D, Zou Y (2020) Rapid separation of Po-210 from Pb-210 based on the usage of a commercial Sr-Specific chromatographic resin. J Environ Radioact 211:106083

    Article  CAS  Google Scholar 

  34. Vajda N, Pöllänen R, Martin P, Kim C-K (2020) Chapter 5—alpha spectrometry. In: L’Annunziata MF (ed) Handbook of radioactivity analysis, 4th edn. Academic Press, London

    Google Scholar 

  35. Weber R, Vater P, Esterlund RA, Patzelt P (1999) On the energy resolution of α-sources prepared by electrodeposition of uranium. Nucl Instrum Methods A 423:468–471

    Article  CAS  Google Scholar 

  36. Pyrolusite Mineral Data: http://webmineral.com/data/Pyrolusite.shtml#.XxwkXudS-M8. Accessed 25 Sep 2020

  37. Ramsdellite Mineral Data: http://webmineral.com/data/Ramsdellite.shtml#.XxwlFOdS-M8. Accessed 25 Sep 2020

  38. Knoll GF (1979) Radiation detection and measurement. Wiley, New York

    Google Scholar 

  39. Interaction of heavy charged particles with a substance: http://nuclphys.sinp.msu.ru/partmat/pm01.htm#(1). Accessed 25 Sep 2020 (in Russian)

  40. Betenekov ND (2018) Radionuclide diagnostics of the sorption using the 224Ra subfamily and α-ray spectrometry. Radiochemistry 60(5):552–557

    Article  CAS  Google Scholar 

  41. Carvalho F, Fernandes S, Fesenko S, Holm E, Howard B, Martin P, Phaneuf M, Porcelli D, Pröhl G, Twining J (2017) The environmental behaviour of polonium. IAEA Technical reports series No. 484, Vienna

  42. https://environmentalchemistry.com/yogi/periodic/ionicradius.html. Accessed 25 Aug 2020

  43. https://www.gordonengland.co.uk/elements/ra.htm. Accessed 25 Aug 2020

  44. Brookings DG (1988) Eh–pH diagrams for geochemistry. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, Project Number 20-03-00931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Semenishchev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenishchev, V.S., Tomashova, L.A. & Titova, S.M. The study of radium and polonium sorption by a thin-layer MnO2-CTA sorbent. J Radioanal Nucl Chem 327, 997–1003 (2021). https://doi.org/10.1007/s10967-020-07576-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07576-w

Keywords

Navigation