Skip to main content
Log in

A Chemomechanical Model for Regulation of Contractility in the Embryonic Brain Tube

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Morphogenesis is regulated by genetic, biochemical, and biomechanical factors, but the feedback controlling the interactions between these factors remains poorly understood. A previous study has found that compressing the brain tube of the early chick embryo induces changes in contractility and nuclear shape in the neuroepithelial wall. Assuming this response involves mechanical feedback, we used experiments and computational modeling to investigate a hypothetical mechanism behind the observed behavior. First, we measured nuclear circularity in embryonic chick brains subjected to transverse compression. Immediately after loading, the circularity varied regionally and appeared to reflect the local state of stress in the wall. After three hours of culture with sustained compression, however, the nuclei became rounder. Exposure to a gap junction blocker inhibited this response, suggesting that it requires intercellular diffusion of a biochemical signal. We speculate that the signal regulates the contraction that occurs near the lumen, altering stress distributions and nuclear geometry throughout the wall. Simulating compression using a chemomechanical finite-element model based on this idea shows that our hypothesis is consistent with most of the experimental data. This work provides a foundation for future investigations of chemomechanical feedback in epithelia during embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Detailed images and measurements will be furnished on reasonable request.

Code availability

Comsol models will be provided on request.

References

  1. Beloussov, L.V.: Morphomechanics of Development, vol. 955. Springer, Berlin (2015)

    Google Scholar 

  2. Lecuit, T., Lenne, P.F., Munro, E.: Force generation, transmission, and integration during cell and tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 27, 157–184 (2011). https://doi.org/10.1146/annurev-cellbio-100109-104027

    Article  Google Scholar 

  3. Hannezo, E., Heisenberg, C.-P.: Mechanochemical feedback loops in development and disease. Cell 178(1), 12–25 (2019)

    Article  Google Scholar 

  4. Mammoto, T., Mammoto, A., Ingber, D.E.: Mechanobiology and developmental control. Annu. Rev. Cell Dev. Biol. 29, 27–61 (2013)

    Article  Google Scholar 

  5. Merle, T., Farge, E.: Trans-scale mechanotransductive cascade of biochemical and biomechanical patterning in embryonic development: the light side of the force. Curr. Opin. Cell Biol. 55, 111–118 (2018). https://doi.org/10.1016/j.ceb.2018.07.003

    Article  Google Scholar 

  6. Filas, B.A., Oltean, A., Beebe, D.C., Okamoto, R.J., Bayly, P.V., Taber, L.A.: A potential role for differential contractility in early brain development and evolution. Biomech. Model. Mechanobiol. 11(8), 1251–1262 (2012). https://doi.org/10.1007/s10237-012-0389-4

    Article  Google Scholar 

  7. Hosseini, H.S., Garcia, K.E., Taber, L.A.: A new hypothesis for foregut and heart tube formation based on differential growth and actomyosin contraction. Development 144(13), 2381–2391 (2017). https://doi.org/10.1242/dev.145193

    Article  Google Scholar 

  8. Kim, H.Y., Varner, V.D., Nelson, C.M.: Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development 140(15), 3146–3155 (2013). https://doi.org/10.1242/dev.093682

    Article  Google Scholar 

  9. Gorfinkiel, N., Blanchard, G.B.: Dynamics of actomyosin contractile activity during epithelial morphogenesis. Curr. Opin. Cell Biol. 23(5), 531–539 (2011)

    Article  Google Scholar 

  10. Heer, N.C., Martin, A.C.: Tension, contraction and tissue morphogenesis. Development 144(23), 4249–4260 (2017)

    Article  Google Scholar 

  11. Filas, B.A., Bayly, P.V., Taber, L.A.: Mechanical stress as a regulator of cytoskeletal contractility and nuclear shape in embryonic epithelia. Ann. Biomed. Eng. 39, 443–454 (2011). https://doi.org/10.1007/s10439-010-0171-7

    Article  Google Scholar 

  12. Lecuit, T., Lenne, P.F.: Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8(8), 633–644 (2007). https://doi.org/10.1038/nrm2222

    Article  Google Scholar 

  13. Hamburger, V., Hamilton, H.L.: A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951)

    Article  Google Scholar 

  14. Voronov, D.A., Taber, L.A.: Cardiac looping in experimental conditions: effects of extraembryonic forces. Dev. Dyn. 224(4), 413–421 (2002). https://doi.org/10.1002/dvdy.10121

    Article  Google Scholar 

  15. Damania, D., Subramanian, H., Tiwari, A.K., Stypula, Y., Kunte, D., Pradhan, P., Roy, H.K., Backman, V.: Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture. Biophys. J. 99(3), 989–996 (2010)

    Article  ADS  Google Scholar 

  16. Sullivan, G.M., Feinn, R.: Using effect size – or why the p value is not enough. J. Grad. Med. Educ. 4(3), 279–282 (2012)

    Article  Google Scholar 

  17. Abbaci, M., Barberi-Heyob, M., Blondel, W., Guillemin, F., Didelon, J.: Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. BioTechniques 45(1), 33–62 (2008)

    Article  Google Scholar 

  18. Tojkander, S., Gateva, G., Lappalainen, P.: Actin stress fibers - assembly, dynamics and biological roles. J. Cell Sci. 125(Pt 8), 1855–1864 (2012). https://doi.org/10.1242/jcs.098087

    Article  Google Scholar 

  19. Katoh, K., Kano, Y., Noda, Y.: Rho-associated kinase-dependent contraction of stress fibres and the organization of focal adhesions. J. R. Soc. Interface 8(56), 305–311 (2011)

    Article  Google Scholar 

  20. Thomas, C.H., Collier, J.H., Sfeir, C.S., Healy, K.E.: Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl. Acad. Sci. USA 99(4), 1972–1977 (2002). https://doi.org/10.1073/pnas.032668799. 032668799 [pii]

    Article  ADS  Google Scholar 

  21. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)

    Article  Google Scholar 

  22. Taber, L.A.: Continuum Modeling in Mechanobiology. Springer, Berlin (2020)

    Book  Google Scholar 

  23. Taber, L.A.: Nonlinear Theory of Elasticity: Applications in Biomechanics. World Scientific, New Jersey (2004)

    Book  Google Scholar 

  24. Hosseini, H.S., Beebe, D.C., Taber, L.A.: Mechanical effects of the surface ectoderm on optic vesicle morphogenesis in the chick embryo. J. Biomech. 47(16), 3837–3846 (2014). https://doi.org/10.1016/j.jbiomech.2014.10.018

    Article  Google Scholar 

  25. Xu, G., Kemp, P.S., Hwu, J.A., Beagley, A.M., Bayly, P.V., Taber, L.A.: Opening angles and material properties of the early embryonic chick brain. J. Biomech. Eng. 132(1), 011005 (2010). https://doi.org/10.1115/1.4000169

    Article  Google Scholar 

  26. Blatz, P.D., Ko, W.L.: Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheol. 6, 223–251 (1962)

    Article  Google Scholar 

  27. Pajerowski, J.D., Dahl, K.N., Zhong, F.L., Sammak, P.J., Discher, D.E.: Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. USA 104(40), 15619–15624 (2007). https://doi.org/10.1073/pnas.0702576104

    Article  ADS  Google Scholar 

  28. Pathak, A., McMeeking, R.M., Evans, A.G., Deshpande, V.S.: An analysis of the cooperative mechano-sensitive feedback between intracellular signaling, focal adhesion development, and stress fiber contractility. J. Appl. Mech. 78(4), 041001 (2011)

    Article  ADS  Google Scholar 

  29. Wang, Q., Feng, J.J., Pismen, L.M.: A cell-level biomechanical model of Drosophila dorsal closure. Biophys. J. 103(11), 2265–2274 (2012)

    Article  ADS  Google Scholar 

  30. Thompson, D.W.: On Growth and Form. Cambridge University Press, Cambridge (1942)

    MATH  Google Scholar 

  31. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  32. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25(1), 1–47 (1969). https://doi.org/10.1016/s0022-5193(69)80016-0

    Article  ADS  Google Scholar 

  33. Green, J.B., Sharpe, J.: Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142(7), 1203–1211 (2015)

    Article  Google Scholar 

  34. Beloussov, L.V.: The Dynamic Architecture of a Developing Organism: An Interdisciplinary Approach to the Development of Organisms. Kluwer Academic, Dordrecht (1998)

    Book  Google Scholar 

  35. Beloussov, L.V., Lipchinsky, A.: Morphomechanics of Development. Springer, New York (2015)

    Book  Google Scholar 

  36. Pouille, P.A., Ahmadi, P., Brunet, A.C., Farge, E.: Mechanical signals trigger myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal. 2(66), ra16 (2009). https://doi.org/10.1126/scisignal.2000098

    Article  Google Scholar 

  37. Goodenough, D.A., Paul, D.L.: Gap junctions. Cold Spring Harb. Perspect. Biol. 1(1), a002576 (2009)

    Article  Google Scholar 

  38. Ponik, S.M., Trier, S.M., Wozniak, M.A., Eliceiri, K.W., Keely, P.J.: RhoA is down-regulated at cell–cell contacts via p190rhogap-b in response to tensional homeostasis. Mol. Biol. Cell 24(11), 1688–1699 (2013)

    Article  Google Scholar 

  39. Acharya, B.R., Nestor-Bergmann, A., Liang, X., Gupta, S., Duszyc, K., Gauquelin, E., Gomez, G.A., Budnar, S., Marcq, P., Jensen, O.E., Bryant, Z., Yap, A.S.: A mechanosensitive RhoA pathway that protects epithelia against acute tensile stress. Dev. Cell 47(4), 439–452 (2018)

    Article  Google Scholar 

  40. Szczesny, S.E., Mauck, R.L.: The nuclear option: evidence implicating the cell nucleus in mechanotransduction. J. Biomech. Eng. 139(2), 021006 (2017). https://doi.org/10.1115/1.4035350

    Article  Google Scholar 

  41. Kirby, T.J., Lammerding, J.: Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 20(4), 373–381 (2018)

    Article  Google Scholar 

  42. Odell, G.M., Oster, G., Alberch, P., Burnside, B.: The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev. Biol. 85(2), 446–462 (1981)

    Article  Google Scholar 

  43. Olesen, N.E., Hofgaard, J.P., Holstein-Rathlou, N.-H., Nielsen, M.S., Jacobsen, J.C.B.: Estimation of the effective intercellular diffusion coefficient in cell monolayers coupled by gap junctions. Eur. J. Pharm. Sci. 46(4), 222–232 (2012)

    Article  Google Scholar 

  44. Deshpande, V.S., Mrksich, M., McMeeking, R.M., Evans, A.G.: A bio-mechanical model for coupling cell contractility with focal adhesion formation. J. Mech. Phys. Solids 56(4), 1484–1510 (2008)

    Article  ADS  Google Scholar 

  45. Ronan, W., Deshpande, V.S., McMeeking, R.M., McGarry, J.P.: Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion. Biomech. Model. Mechanobiol. 13(2), 417–435 (2014)

    Article  Google Scholar 

  46. Maraldi, M., Garikipati, K.: The mechanochemistry of cytoskeletal force generation. Biomech. Model. Mechanobiol. 14(1), 59–72 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a tribute to Professor Gerhard Holzapfel to mark his 60th birthday. For five years, the second author (LAT) had the honor of serving alongside Professor Holzapfel as a co-Editor-in-Chief of Biomechanics and Modeling in Mechanobiology, the foremost journal in the burgeoning field of mechanobiology. With Jay Humphrey, Gerhard founded BMMB two decades ago and remains in his position today. It is a remarkable achievement that he can maintain the outstanding quality of the journal for so long while continuing to teach and run a vigorous research program at the same time. He truly has earned my utmost respect. We thank the Department of Mechanical Engineering & Materials Science at Washington University for use of the confocal microscope. This research was supported by Grant R01 NS070918 (LAT) from the National Institutes of Health.

Funding

Grant R01 NS070918 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry A. Taber.

Ethics declarations

Conflict of interest

None.

Competing interests

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(PDF 591 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oltean, A., Taber, L.A. A Chemomechanical Model for Regulation of Contractility in the Embryonic Brain Tube. J Elast 145, 77–98 (2021). https://doi.org/10.1007/s10659-020-09811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09811-7

Mathematics Subject Classification

Keywords

Navigation