Skip to main content
Log in

Effects of Tin on the Morphological and Electrochemical Properties of Arc-Discharge Nanomaterials

  • Powder Materials for Energy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electric arc synthesis enables the fabrication of materials in the form of metal nanoparticles packed into a carbon matrix, which separates the nanoparticles, preventing them from contacting each other, merging, coagulating, or contacting possible reactive environments, thereby stabilizing the nanoparticles. This paper presents the results of studies of the effect of tin on the structure of a composite tin–carbon nanomaterial synthesized by the electric arc method. The concentration of tin affects both the formed carbon structure, changing it from amorphous to graphene-like, and the size of the formed tin nanoparticles. In turn, these structural features affect the electrochemical properties of the synthesized materials used as anodes in lithium-ion batteries. Increasing the tin content increased the specific capacity, but increasing the size of the tin nanoparticles and the rigidity of the carbon matrix decreased the anode material’s stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature 347, 354 (1990). https://doi.org/10.1038/347354a0.

    Article  Google Scholar 

  2. Y. Saito, M. Okuda, T. Yoshikawa, A. Kasuya, and Y. Nishina, J. Phys. Chem. Solids 98, 6696 (1994). https://doi.org/10.1021/j100078a008.

    Article  Google Scholar 

  3. J.H.J. Scott and S.A. Majetich, Phys. Rev. B 52, 12564 (1995). https://doi.org/10.1103/PhysRevB.52.12564.

    Article  Google Scholar 

  4. S. Iijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0.

    Article  Google Scholar 

  5. M. Reza Sanaee, S. Chaitoglou, N. Aguiló-Aguayo, and E. Bertran, Appl. Sci. 7, 26 (2017). https://doi.org/10.3390/app7010026.

    Article  Google Scholar 

  6. R. Hu, M. Alexandru Ciolan, X. Wang, and M. Nagatsu, Nanotechnology 27, 335602 (2016). https://doi.org/10.1088/0957-4484/27/33/335602.

    Article  Google Scholar 

  7. A.V. Zaikovskii and S.A. Novopashin, Phys. Status Solidi A 214, 1700142 (2017). https://doi.org/10.1002/pssa.201700142.

    Article  Google Scholar 

  8. A.V. Zaikovskii, T.Y. Kardash, B.A. Kolesov, and O.A. Nikolaeva, Phys. Status Solidi A 216, 1900079 (2019). https://doi.org/10.1002/pssa.201900079.

    Article  Google Scholar 

  9. D.V. Smovzh, I.A. Kostogrud, S.Z. Sakhapov, A.V. Zaikovskii, and S.A. Novopashin, Carbon 112, 97 (2017). https://doi.org/10.1016/j.carbon.2016.10.094.

    Article  Google Scholar 

  10. K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, and C.N.R. Rao, J. Phys. Chem. C 113, 4257 (2009). https://doi.org/10.1021/jp900791y.

    Article  Google Scholar 

  11. Y. Chen, H. Zhao, L. Sheng, L. Yu, K. An, J. Xu, and X. Zhao, Chem. Phys. Lett. 538, 72 (2012). https://doi.org/10.1016/j.cplett.2012.04.020.

    Article  Google Scholar 

  12. W. Xiaohui, L. Zhiliang, Z. Jie, L. Xingguo, and S. Zujin, J. Mat. Chem. A 5, 13769 (2017). https://doi.org/10.1039/c7ta03323k.

    Article  Google Scholar 

  13. T.Y. Kardash, E.A. Derevyannikova, E.M. Slavinskaya, A.I. Stadnichenko, V.A. Maltsev, A.V. Zaikovskii, S.A. Novopashin, A.I. Boronin, and K.M. Neyman, Front. Chem. 7, 114 (2019). https://doi.org/10.3389/fchem.2019.00114.

    Article  Google Scholar 

  14. A. Zaikovskii, S. Novopashin, V. Maltsev, T. Kardash, and I. Shundrina, RSC Adv. 9, 36621 (2019). https://doi.org/10.1039/C9RA05485E.

    Article  Google Scholar 

  15. H. Lee, S.H. Park, S.J. Kim, Y.K. Park, B.H. Kim, and S.C. Jung, Microelectron. Eng. 126, 153 (2014). https://doi.org/10.1016/j.mee.2014.07.014.

    Article  Google Scholar 

  16. G. Saito, C. Zhu, and T. Akiyama, Adv. Powder Technol. 25, 728 (2014). https://doi.org/10.1016/j.apt.2013.11.001.

    Article  Google Scholar 

  17. Z. Kelgenbaeva, E. Omurzak, H. Ihara, C. Iwamoto, S. Sulaimankulova, and T. Mashimo, Phys. Status Solidi A 212, 2951 (2015). https://doi.org/10.1002/pssa.201532502.

    Article  Google Scholar 

  18. M. Shariat, R. Shaida, M. Karimipour, and M. Molaei, Mater. Res. Exp. 6, 015019 (2018). https://doi.org/10.1088/2053-1591/aae5bc.

    Article  Google Scholar 

  19. Y. He, X. Ren, Y. Xu, M.H. Engelhard, X. Li, J. Xiao, J. Liu, J.G. Zhang, W. Xu, and C. Wang, Nat. Nanotechnol. 14, 1042 (2019). https://doi.org/10.1038/s41565-019-0558-z.

    Article  Google Scholar 

  20. L. Frenck, G.K. Sethi, J.A. Maslyn, and N.P. Balsara, Front. Energy Res. 7, 115 (2019). https://doi.org/10.3389/fenrg.2019.00115.

    Article  Google Scholar 

  21. K.N. Wood, E. Kazyak, A.F. Chadwick, K.H. Chen, J.G. Zhang, K. Thornton, N.P. Dasgupta, and A.C.S. Cent, Science 2, 790 (2016). https://doi.org/10.1021/acscentsci.6b00260.

    Article  Google Scholar 

  22. D. Allart, M. Montaru, and H. Gualous, J. Electrochem. Soc. 165, A380–A387 (2018). https://doi.org/10.1149/2.1251802jes.

    Article  Google Scholar 

  23. D. Martin, S. Martin, and R. Markus, J. Power Sources 353, 58 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.152.

    Article  Google Scholar 

  24. L. Wang, M. Feygenson, M.C. Aronson, and W.Q. Han, J. Phys. Chem. C 114, 14697 (2010). https://doi.org/10.1021/jp101852y.

    Article  Google Scholar 

  25. K. Kravchyk, L. Protesescu, M.I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin, and M.V. Kovalenko, J. Am. Chem. Soc. 135, 14697 (2013). https://doi.org/10.1021/jp101852y.

    Article  Google Scholar 

  26. W. Xiaohui, L. Zhiliang, Z. Jie, L. Xingguo, and S. Zujin, J. Mater. Chem. A 5, 13769 (2017). https://doi.org/10.1039/C7TA03323K.

    Article  Google Scholar 

  27. J.Q.C. He, N. Zhao, Z. Wang, C. Shi, E.Z. Liu, and J. Li, ACS Nano 8, 1728 (2014). https://doi.org/10.1021/nn406105n.

    Article  Google Scholar 

  28. Y. Yu, L. Gu, C. Wang, A. Dhanabalan, and P.A. Aken, J. Maier. Angew. Chem. Int. Ed. 48, 6485 (2009). https://doi.org/10.1002/anie.200901723.

    Article  Google Scholar 

  29. S. Li, Z. Wang, J. Liu, L.Y. Yang, Y. Guo, L. Cheng, M. Lei, and W. Wang, ACS Appl. Mater. Interfaces 8, 19438 (2016). https://doi.org/10.1021/acsami.6b04736.

    Article  Google Scholar 

  30. F. Cheng, W.C. Li, J.N. Zhu, W.P. Zhang, and A.H. Lu, Nano Energy 19, 486 (2016). https://doi.org/10.1016/j.nanoen.2015.10.033.

    Article  Google Scholar 

  31. C. Cui, X. Liu, N. Wu, and Y. Sun, Mater. Lett. 143, 35 (2015). https://doi.org/10.1016/j.matlet.2014.12.055.

    Article  Google Scholar 

  32. J. Jiao, S. Seraphin, X. Wang, and J.C. Withers, J. Appl. Phys. 80, 103 (1996). https://doi.org/10.1063/1.362765.

    Article  Google Scholar 

  33. C. Guerret-Piecourt, Y.L. Bouar, A. Lolseaut, and H. Pascard, Nature 372, 761 (1994). https://doi.org/10.1038/372761a0.

    Article  Google Scholar 

  34. S. Yatom, A. Khrabry, J. Mitrani, A. Khodak, I. Kaganovich, V. Vekselman, B. Stratton, and Y. Raitses, MRS Commun. 8, 842 (2018). https://doi.org/10.1557/mrc.2018.91.

    Article  Google Scholar 

  35. P. Kappler, P. Ehrburger, J. Lahaye, and J.B. Donnet, J. Appl. Phys. 50, 308 (1979). https://doi.org/10.1063/1.325660.

    Article  Google Scholar 

  36. J. Liu and L. Fu, Adv. Mater. 31, 1800690 (2018). https://doi.org/10.1002/adma.201800690.

    Article  Google Scholar 

  37. A.C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414 (2001). https://doi.org/10.1103/PhysRevB.64.075414.

    Article  Google Scholar 

  38. E.J. Heller, Y. Yang, L. Kocia, W. Chen, S. Fang, M. Borunda, and E. Kaxiras, ACS Nano 10, 2803 (2016). https://doi.org/10.1021/acsnano.5b07676.

    Article  Google Scholar 

  39. A.C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095.

    Article  Google Scholar 

  40. X. Dong, P. Wang, W. Fang, C.Y. Su, Y.H. Chen, L.J. Li, and P. Chen, Carbon 49, 3672 (2011). https://doi.org/10.1016/j.carbon.2011.04.069.

    Article  Google Scholar 

  41. A.J. Smith and J.R. Dahn, J. Electrochem. Soc. 159, A290 (2012). https://doi.org/10.1149/2.076203jes.

    Article  Google Scholar 

  42. N. Zhang, Y. Wang, M. Jia, Y. Liu, J. Xu, L. Jiao, and F. Cheng, Chem. Commun. 54, 1205 (2018). https://doi.org/10.1039/c7cc09095a.

    Article  Google Scholar 

  43. R.A. Huggins, J. Power Sources 81, 13 (1999). https://doi.org/10.1016/s0378-7753(99)00124-x.

    Article  Google Scholar 

  44. J.H. Kim, G.F. Jeong, Y.W. Kim, H.J. Sohn, C.W. Park, and C.K. Lee, J. Electrochem. Soc. 150, A1544 (2003). https://doi.org/10.1149/1.1617302.

    Article  Google Scholar 

  45. N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Mater. Today 18, 252 (2015). https://doi.org/10.1016/j.mattod.2014.10.040.

    Article  Google Scholar 

Download references

Acknowledgements

The study of the arc discharge synthesis was carried out under state contract with IT SB RAS (AAAA-A17-117071760008-0). Morphological and structural characterization of the materials and the electrochemical study were supported by the Russian Science Foundation (Project No. 20-79-00085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Zaikovskii.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaikovskii, A.V., Iurchenkova, A.A., Kozlachkov, D.V. et al. Effects of Tin on the Morphological and Electrochemical Properties of Arc-Discharge Nanomaterials. JOM 73, 847–855 (2021). https://doi.org/10.1007/s11837-020-04556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04556-z

Navigation