Skip to main content
Log in

A de novo binuclear zinc enzyme with DNA cleavage activity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Metallohydrolases are broadly used throughout biology, often to catalyze the degradation of macromolecules such as DNA and proteins. Many of these enzymes function with zinc in their active site, and an important subset of these enzymes utilize a binuclear zinc active site. Mimics of these enzymes have been developed, some of which catalyze the digestion of DNA. However, the majority of the mimics that utilize zinc are small molecules, and most are mononuclear. Herein, we report DNA cleavage activity by the de novo designed Due Ferri single-chain (DFsc) protein containing a binuclear zinc active site. This binuclear zinc–protein complex is able to digest plasmid DNA at rates up to 50 ng/h, and these cleavage rates are affected by changes to amino acid residues near the zinc-binding site. These results indicate that the DFsc scaffold is a good model system to carry out careful structure–function relationship studies to understand key structural features that influence reactivity in natural binuclear zinc hydrolases, as it is the first report of a binuclear model system in a protein scaffold.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Weston J (2005) Mode of action of bi- and trinuclear zinc hydrolases and their synthetic analogues. Chem Rev 105:2151–2174. https://doi.org/10.1021/cr020057z

    Article  CAS  PubMed  Google Scholar 

  2. Wilcox DE (1996) Binuclear Metallohydrolases. Chem Rev 96:2435–2458. https://doi.org/10.1021/cr950043b

    Article  CAS  PubMed  Google Scholar 

  3. Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 102:4581–4608

    Article  CAS  Google Scholar 

  4. Mitić N, Smith SJ, Neves A et al (2006) The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 106:3338–3363. https://doi.org/10.1021/cr050318f

    Article  CAS  PubMed  Google Scholar 

  5. McGeary RP, Schenk G, Guddat LW (2014) The applications of binuclear metallohydrolases in medicine: recent advances in the design and development of novel drug leads for purple acid phosphatases, metallo-β-lactamases and arginases. Eur J Med Chem 76:132–144. https://doi.org/10.1016/j.ejmech.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  6. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  Google Scholar 

  7. Bertini I, Gray HB, Steifel EI, Valentine JS (2007) Biological inorganic chemistry: structure and reactivity. University Science Books, Sausolito

    Google Scholar 

  8. Lönnberg H (2011) Cleavage of RNA phosphodiester bonds by small molecular entities: a mechanistic insight. Org Biomol Chem 9:1687–1703. https://doi.org/10.1039/c0ob00486c

    Article  CAS  PubMed  Google Scholar 

  9. Liu C, Wang L (2008) DNA hydrolytic cleavage catalyzed by synthetic multinuclear metallonucleases. Dalton Trans. https://doi.org/10.1039/B811616D

    Article  PubMed  Google Scholar 

  10. Daumann LJ, Schenk G, Ollis DL, Gahan LR (2013) Spectroscopic and mechanistic studies of dinuclear metallohydrolases and their biomimetic complexes. Dalton Trans 43:910–928. https://doi.org/10.1039/C3DT52287C

    Article  PubMed  Google Scholar 

  11. Hernick M, Fierke CA (2005) Zinc hydrolases: the mechanisms of zinc-dependent deacetylases. Arch Biochem Biophys 433:71–84. https://doi.org/10.1016/j.abb.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  12. Lai W-L, Chou L-Y, Ting C-Y et al (2004) The functional role of the binuclear metal center in d-aminoacylase one-metal activation and second-metal attenuation. J Biol Chem 279:13962–13967. https://doi.org/10.1074/jbc.M308849200

    Article  CAS  PubMed  Google Scholar 

  13. Larrabee JA, Schenk G, Mitić N, Riley MJ (2015) Use of magnetic circular dichroism to study dinuclear metallohydrolases and the corresponding biomimetics. Eur Biophys J 44:393–415. https://doi.org/10.1007/s00249-015-1053-6

    Article  CAS  PubMed  Google Scholar 

  14. Schenk G, Mitić N, Gahan LR et al (2012) Binuclear metallohydrolases: Complex mechanistic strategies for a simple chemical reaction. Acc Chem Res 45:1593–1603. https://doi.org/10.1021/ar300067g

    Article  CAS  PubMed  Google Scholar 

  15. Parkin G (2004) Synthetic analogues relevant to the structure and function of zinc enzymes. Chem Rev 104:699–768. https://doi.org/10.1021/cr0206263

    Article  CAS  PubMed  Google Scholar 

  16. Rufo CM, Moroz YS, Moroz OV et al (2014) Short peptides self-assemble to produce catalytic amyloids. Nat Chem 6:303–309. https://doi.org/10.1038/nchem.1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cangelosi VM, Deb A, Penner-Hahn JE, Pecoraro VL (2014) A de novo designed metalloenzyme for the hydration of CO2. Angew Chem Int Ed 53:7900–7903. https://doi.org/10.1002/anie.201404925

    Article  CAS  Google Scholar 

  18. Zastrow ML, Pecoraro VL (2014) Designing hydrolytic zinc metalloenzymes. Biochemistry 53:957–978. https://doi.org/10.1021/bi4016617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burton AJ, Thomson AR, Dawson WM et al (2016) Installing hydrolytic activity into a completely de novo protein framework. Nat Chem 8:837–844. https://doi.org/10.1038/nchem.2555

    Article  CAS  PubMed  Google Scholar 

  20. Der BS, Edwards DR, Kuhlman B (2012) Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Biochemistry 51:3933–3940. https://doi.org/10.1021/bi201881p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deck KM, Tseng TA, Burstyn JN (2002) Triisopropyltriazacyclononane copper(II): an efficient phosphodiester hydrolysis catalyst and dna cleavage agent. Inorg Chem 41:669–677. https://doi.org/10.1021/ic0107025

    Article  CAS  PubMed  Google Scholar 

  22. Tseng T-SA, Burstyn JN (2008) Synthesis and DNA cleavage activity of a bifunctional intercalator-linked copper(ii) macrocycle. Chem Commun Camb Engl. https://doi.org/10.1039/b812183d

    Article  Google Scholar 

  23. Hegg EL, Mortimore SH, Cheung CL et al (1999) Structure−reactivity studies in copper(II)-catalyzed phosphodiester hydrolysis. Inorg Chem 38:2961–2968. https://doi.org/10.1021/ic981087g

    Article  CAS  PubMed  Google Scholar 

  24. Calhoun JR, Nastri F, Maglio O et al (2005) Artificial diiron proteins: from structure to function. Pept Sci 80:264–278. https://doi.org/10.1002/bip.20230

    Article  CAS  Google Scholar 

  25. Maglio O, Nastri F, Martin de Rosales RT et al (2007) Diiron-containing metalloproteins: developing functional models. Comp RendusChim 10:703–720. https://doi.org/10.1016/j.crci.2007.03.010

    Article  CAS  Google Scholar 

  26. Chino M, Maglio O, Nastri F et al (2015) Artificial diiron enzymes with a de novo designed four-helix bundle structure. Eur J Inorg Chem 2015:3371–3390. https://doi.org/10.1002/ejic.201500470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lombardi A, Summa CM, Geremia S et al (2000) Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc Natl Acad Sci 97:6298–6305. https://doi.org/10.1073/pnas.97.12.6298

    Article  CAS  PubMed  Google Scholar 

  28. Summa CM, Lombardi A, Lewis M, DeGrado WF (1999) Tertiary templates for the design of diiron proteins. Curr Opin Struct Biol 9:500–508. https://doi.org/10.1016/S0959-440X(99)80071-2

    Article  CAS  PubMed  Google Scholar 

  29. Calhoun JR, Kono H, Lahr S et al (2003) Computational design and characterization of a monomeric helical dinuclear metalloprotein. J Mol Biol 334:1101–1115. https://doi.org/10.1016/j.jmb.2003.10.004

    Article  CAS  PubMed  Google Scholar 

  30. Calhoun JR, Liu W, Spiegel K et al (2008) Solution NMR structure of a designed metalloprotein and complementary molecular dynamics refinement. Structure 16:210–215. https://doi.org/10.1016/j.str.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  31. Martin T, de Rosales R, Faiella M, Farquhar E et al (2010) Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions. J Biol Inorg Chem 15:717–728. https://doi.org/10.1007/s00775-010-0639-9

    Article  CAS  Google Scholar 

  32. Reig AJ, Pires MM, Snyder RA et al (2012) Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nat Chem 4:900–906. https://doi.org/10.1038/nchem.1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geremia S, Di Costanzo L, Randaccio L et al (2005) Response of a designed metalloprotein to changes in metal ion coordination, exogenous ligands, and active site volume determined by X-ray crystallography. J Am Chem Soc 127:17266–17276. https://doi.org/10.1021/ja054199x

    Article  CAS  PubMed  Google Scholar 

  34. Pasternak A, Kaplan J, Lear JD, Degrado WF (2001) Proton and metal ion-dependent assembly of a model diiron protein. Protein Sci 10:958–969. https://doi.org/10.1110/ps.52101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Faiella M, Andreozzi C, de Rosales RTM et al (2009) An artificial di-iron oxo-protein with phenol oxidase activity. Nat Chem Biol 5:882–884. https://doi.org/10.1038/nchembio.257

    Article  CAS  PubMed  Google Scholar 

  36. Yoshida H (1973) Acid phosphatases from fusarium moniliformeIII. Mode of action of acid phosphatase II on bis-p-nitrophenyl phosphate. J Biochem (Tokyo) 73:23–29. https://doi.org/10.1093/oxfordjournals.jbchem.a130067

    Article  CAS  Google Scholar 

  37. Singh DN, Gupta A, Singh VS et al (2015) Identification and characterization of a novel phosphodiesterase from the metagenome of an Indian coalbed. PLoS ONE. https://doi.org/10.1371/journal.pone.0118075

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bazzicalupi C, Bencini A, Bonaccini C et al (2008) Tuning the activity of Zn(II) complexes in DNA cleavage: clues for design of new efficient metallo-hydrolases. Inorg Chem 47:5473–5484. https://doi.org/10.1021/ic800085n

    Article  CAS  PubMed  Google Scholar 

  39. Sissi C, Rossi P, Felluga F et al (2001) Dinuclear Zn2+ Complexes of synthetic heptapeptides as artificial nucleases. J Am Chem Soc 123:3169–3170. https://doi.org/10.1021/ja005675g

    Article  CAS  PubMed  Google Scholar 

  40. Tjioe L, Meininger A, Joshi T et al (2011) Efficient plasmid DNA cleavage by copper(II) complexes of 1,4,7-triazacyclononane ligands featuring Xylyl-linked guanidinium groups. Inorg Chem 50:4327–4339. https://doi.org/10.1021/ic102301n

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Science Foundation Major Research Instrumentation grant (1725534). OMP and KMB were supported in part by the Mindlin Foundation (MF18-UMR31). AP, OMP, and KMB were supported, in part, by the Cross-Disciplinary Science Institute at Gettysburg College (X-SIG). KMB thanks Zakiya Whatley and Shelli Frey for helpful conversations. AP and KMB thank Micaylah Bowers and Meredith Brown for support and assistance in experiment preparations.

Funding

This work was supported by a National Science Foundation Major Research Instrumentation grant (1725534). OMP and KMB were supported in part by the Mindlin Foundation (MF18-UMR31). AP, OMP, and KMB were supported, in part, by the Cross-Disciplinary Science Institute at Gettysburg College (X-SIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine M. Buettner.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 465 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paredes, A., Peduzzi, O.M., Reig, A.J. et al. A de novo binuclear zinc enzyme with DNA cleavage activity. J Biol Inorg Chem 26, 161–167 (2021). https://doi.org/10.1007/s00775-020-01845-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01845-5

Keywords

Navigation