Skip to main content

Advertisement

Log in

The Choco low‐level jet: past, present and future

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Choco low-level jet is among the main regional circulation mechanisms related to the advection of water vapor from the eastern Pacific to northwestern South America. Variations in the intensity of position of the jet core are identified as determinant for regional moisture transport and associated rainfall. This paper analyzes the annual cycle of intensity and latitudinal location of this jet according to different reanalysis and observational datasets. Moreover, we compare possible changes in the Choco jet occurred during past climates, like the little ice age (LIA), with those associated with future scenarios of greenhouse gas concentrations (RCP8.5), using simulations from the Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3) and the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our results suggest that according to reanalysis/observational data, as well as the CMIP5 models with the best representation of the Choco jet in present climate, there is a positive correlation between the jet intensity and its latitudinal location, and such relationship is associated with the sea level pressure (SLP) difference between the eastern tropical Pacific and the northwestern South American landmass. Hence, stronger (weaker) SLP differences favor a stronger (weaker) intensity and a northward (southward) location of the Choco jet. PMIP3 simulations suggest a stronger and northward Choco jet during LIA due to a stronger SLP difference in comparison to present climate. However, under the RCP8.5 scenario, there is not robust agreement among CMIP5 models although the best models suggest a southward jet at the end of the 21st century. This suggests that the mechanisms influencing the Choco jet may play different roles during past natural climate changes with respect to anthropogenically-forced climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the southern oscillation in the South American sector. Part I: surface climate. Mon Weather Rev 116(3):505–524

    Article  Google Scholar 

  • Adam O, Bischoff T, Schneider T (2016) Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: zonally averaged ITCZ position. J Clim 29(9):3219–3230

    Article  Google Scholar 

  • Amador JA (1998) A climatic feature of the tropical Americas: the trade wind easterly jet. Top Meteor Oceanogr 5(2):1–13

    Google Scholar 

  • Amador JA, Magaña VO, Pérez JB (2000) The low level jet and convective activity in the Caribbean. In Proc. 24th Conf. on Hurricanes and Tropical Meteorology. pp. 114–115

  • Amador JA, Alfaro EJ, Lizano OG, Magaña VO (2006) Atmospheric forcing of the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):101–142

    Article  Google Scholar 

  • Amador JA (2008) The intra-Americas sea low-level jet. Ann N Y Acad Sci 1146(1):153–188

    Article  Google Scholar 

  • Ambrizzi T, de Souza EB, Pulwarty RS (2004) The Hadley and Walker regional circulations and associated ENSO impacts on South American seasonal rainfall. The Hadley circulation: present, past and future. Springer, Dordrecht, pp 203–235

    Chapter  Google Scholar 

  • Arias PA, Martínez JA, Mejía JD, Pazos MJ, Espinoza JC (2020) Changes in normalized difference vegetation index in the Orinoco and Amazon River basins: links to tropical Atlantic surface temperatures. J Clim (in revision)

  • Arias PA, Martinez JA, Vieira SC (2015) Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim Dyn 45(9–10):2861–2884. https://doi.org/10.1007/s00382-015-2511-7

    Article  Google Scholar 

  • Arnett AB, Steadman CR (1970) Low-level wind flow over eastern Panama and northwestern Colombia. ESSA Tech. Memo. ERLTM-ARL 26, Air Resources Laboratory, Silver Spring, MD, pp. 73

  • Arora VK, Scinocca JF, Boer GJ et al (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38(5):L05805

    Article  Google Scholar 

  • Battisti DS, Ovens DD (1995) The dependence of the low-level equatorial easterly jet on Hadley and Walker circulations. J Atmos Sci 52(22):3911–3931

    Article  Google Scholar 

  • Bedoya-Soto JM, Aristizábal E, Carmona AM, Poveda G (2019) Seasonal shift of the diurnal cycle of rainfall over Medellin’s valley, central Andes of Colombia (1998–2005). Front Earth Sci 7:92. https://doi.org/10.3389/feart.2019.00092

    Article  Google Scholar 

  • Bedoya-Soto JM, Poveda G, Trenberth K, Vélez JJ (2018) Interannual hydroclimatic variability and the 2009–2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands. Theor Appl Climatol 135:1531–1544. https://doi.org/10.1007/s00704-018-2452-2

    Article  Google Scholar 

  • Berbery EH, Barros VR (2002) The hydrologic cycle of the La Plata basin in South America. J Hydrometeorol 3:630–645

    Article  Google Scholar 

  • Bi D, Marsland SJ, Uotila P, O’Farrell S, Fiedler R, Sullivan A, Hirst AC (2013) ACCESS-OM: the ocean and sea-ice core of the ACCESS coupled model. Aust Meteorol Oceanogr J 63(1):213–232

    Article  Google Scholar 

  • Bird BW, Abbott MB, Vuille M, Rodbell DT, Stansell ND, Rosenmeier MF (2011) A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc Natl Acad Sci USA 108(21):8583–8588

    Article  Google Scholar 

  • Bombardi RJ, Carvalho LM (2011) The South Atlantic dipole and variations in the characteristics of the South American Monsoon in the WCRP-CMIP3 multi-model simulations. Clim Dyn 36(11–12):2091–2102

    Article  Google Scholar 

  • Bordi I, Fraedrich K, Lunkeit F, Sutera A (2007) Tropospheric double jets, meridional cells, and eddies: a case study and idealized simulations. Mon Weather Rev 135(9):3118–3133

    Article  Google Scholar 

  • Bosmans JHC, Drijfhout SS, Tuenter E, Lourens LJ, Hilgen FJ, Weber SL (2012) Monsoonal response to mid-holocene orbital forcing in a high resolution GCM. Clim Past 8(2):723–740

    Article  Google Scholar 

  • Burpee RW (1972) The origin and structure of easterly waves in the lower troposphere of North Africa. J Atmos Sci 29(1):77–90

    Article  Google Scholar 

  • Campozano L, Ballari D, Montenegro M, Avilés A (2020) Future meteorological droughts in ecuador: decreasing trends and associated spatio-temporal features derived from CMIP5 MODELS. Front Earth Sci 8:17. https://doi.org/10.3389/feart.2020.00017

    Article  Google Scholar 

  • Carvalho LM, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15(17):2377–2394

    Article  Google Scholar 

  • Coelho CAS, Uvo CB, Ambrizzi T (2002) Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods. Theor Appl Climatol 71(3–4):185–197

    Article  Google Scholar 

  • Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 17(1):61–81. https://doi.org/10.1007/s003820000094

    Article  Google Scholar 

  • Collini EA, Berbery EH, Barros VR, Pyle ME (2008) How does soil moisture influence the early stages of the South American monsoon? J Clim 21(2):195–213

    Article  Google Scholar 

  • Collins WJ et al (2011) Development and evaluation of an earth-system model HadGEM2. Geosci Model Dev 4:1051–1075

    Article  Google Scholar 

  • Cook KH, Vizy EK (2010) Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J Clim 23(6):1477–1494

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Bechtold P (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Dima IM, Wallace JM (2003) On the seasonality of the Hadley cell. J Atmos Sci 60(12):1522–1527

    Article  Google Scholar 

  • Dominguez C, Done JM, Bruyère CL (2020) Easterly wave contributions to seasonal rainfall over the tropical Americas in observations and a regional climate model. Clim Dyn 54:191–209. https://doi.org/10.1007/s00382-019-04996-7

    Article  Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519

    Article  Google Scholar 

  • Dufresne JL, Foujols MA, Denvil S et al (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165

    Article  Google Scholar 

  • Durán-Quesada AM, Gimeno L, Amador J (2017) Role of moisture transport for Central American precipitation. Earth Syst Dyn 8(1):147–161

    Article  Google Scholar 

  • Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10(9):2147–2153

    Article  Google Scholar 

  • Espinoza JC, Garreaud R, Poveda G, Arias PA, Molina-Carpio J, Masiokas M, Scaff L (2020) Hydroclimate of the Andes Part I: main climatic features. Front Earth Sci 8:64

    Article  Google Scholar 

  • Flato G et al (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Flores-Aqueveque V, Rojas M, Aguirre C, Arias PA, González C (2020) South pacific subtropical high from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models. Clim Past 16(1):79–99

    Article  Google Scholar 

  • Fogli PG et al (2009) INGV-CMCC carbon (ICC): a carbon cycle earth system model. CMCC Res. Papers. Euro-Mediterranean Center on Climate Change, Bologna, Italy, pp. 31

  • Fu R, Arias PA, Wang H (2016) The connection between the North and South American monsoons. The monsoons and climate change. Springer, Cham, pp 187–206

    Chapter  Google Scholar 

  • Gallego D, Garcia-Herrera R, Gomez-Delgado FDP, Ordonez-Perez P, Ribera P (2019) Tracking the moisture transport from the Pacific towards Central and northern South America since the late 19th century. Earth Syst Dyn 10(2):319–331

    Article  Google Scholar 

  • Garreaud R, Falvey M (2009) The coastal winds off western subtropical South America in future climate scenarios. Int J Climatol 29:543–554

    Article  Google Scholar 

  • Gebbie G, Huybers P (2019) The little ice age and 20th-century deep Pacific cooling. Science 363(6422):70–74

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(L08707). https://doi.org/10.1029/2006GL025734

  • Giraldo-Cárdenas S, Arias PA, Vieira SC, Zuluaga MD (2020) Easterly waves and precipitation over northern South America and the Caribbean. Int J Climatol (in revisión)

  • Gimeno L, Vázquez M, Eiras-Barca J, Sorí R, Stojanovic M, Algarra I, Nieto R, Ramos AM, Durán-Quesada AM, Dominguez F (2020) Recent progress on the sources of continental precipitation as revealed by moisture transport analysis. Earth Sci Rev 201:103070

    Article  Google Scholar 

  • Grimm AM, Pal JS, Giorgi F (2007) Connection between spring conditions and peak summer monsoon rainfall in South America: role of soil moisture, surface temperature, and topography in eastern Brazil. J Clim 20(24):5929–5945

    Article  Google Scholar 

  • González C, Urrego LE, Martinez JI (2006) Late Quaternary vegetation and climate change in the Panama Basin: palynological evidence from marine cores ODP 677B and TR 163–38. Palaeogeogr Palaeoclimatol Palaeoecol 234:114–126

    Article  Google Scholar 

  • Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421(6921):354

    Article  Google Scholar 

  • Hastenrath S (1999) Equatorial mid-tropospheric easterly jet over the eastern Pacific. J Meteorol Soc Jpn Ser II 77(3):701–709

    Article  Google Scholar 

  • Hastenrath S, Polzin D (2002) Equatorial mid-tropospheric easterly jet over the eastern pacific: comparison from the ECMWF and NCEP-NCAR reanalyses. J Geophys Res 107(D21):4593. https://doi.org/10.1029/2001JD001394

    Article  Google Scholar 

  • Hazeleger W et al (2012) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J-N (2020) The ERA5 global reanalysis. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hidalgo HG, Durán-Quesada AM, Amador JA, Alfaro EJ (2015) The Caribbean low-level jet, the inter-tropical convergence zone and precipitation patterns in the intra-Americas sea: a proposed dynamical mechanism. Geogr Ann A 97(1):41–59

    Article  Google Scholar 

  • Hirota N, Takayabu YN (2013) Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3. Clim Dyn 41(11–12):2909–2920

    Article  Google Scholar 

  • Hodges D, Pu Z (2019) Characteristics and variations of low-level jets and environmental factors associated with summer precipitation extremes over the Great Plains. J Clim 32(16):5123–5144

    Article  Google Scholar 

  • Hoyos I, Cañón-Barriga J, Arenas-Suárez T, Dominguez F, Rodríguez BA (2019) Variability of regional atmospheric moisture over Northern South America: patterns and underlying phenomena. Clim Dyn 52:893–911. https://doi.org/10.1007/s00382-018-4172-9

    Article  Google Scholar 

  • Hoyos I, Dominguez F, Cañón-Barriga J, Martínez JA, Nieto R, Gimeno L, Dirmeyer PA (2018) Moisture origin and transport processes in Colombia, northern South America. Clim Dyn 50:979–990. https://doi.org/10.1007/s00382-017-3653-6

    Article  Google Scholar 

  • Hoyos N, Escobar J, Restrepo JC, Arango AM, Ortiz JC (2013) Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: the human toll of an extreme weather event. App Geog 39:16–25

    Article  Google Scholar 

  • Hurrell JW, Holland MM, Gent PR et al (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94(9):1339–1360

    Article  Google Scholar 

  • Hwang YT, Frierson DM (2013) Link between the double intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc Natl Acad Sci 110(13):4935–4940

    Article  Google Scholar 

  • Jones CD, Hughes JK, Bellouin N et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. https://doi.org/10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Joussaume S, Taylor KE, Braconnot PJFB, Mitchell JFB, Kutzbach JE, Harrison SP, Bonfils C (1999) Monsoon changes for 6000 years ago: results of 18 simulations from the paleoclimate modeling intercomparison project (PMIP). Geophys Res Lett 26(7):859–862

    Article  Google Scholar 

  • Jiang D, Lang X (2010) Last glacial maximum East Asian monsoon: results of PMIP simulations. J Clim 23(18):5030–5038

    Article  Google Scholar 

  • Jiménez-Sánchez G, Marlowski PM, Jewtoukoff V, Young GS, Stensrud D (2019) The orinoco low-level jet: an investigation of its characteristics and evolution using the WRF model. J Geophys Res Atmos 125(13):1–23

    Google Scholar 

  • Jiménez-Sánchez G, Marlowski PM, Young GS, Stensrud D (2020) The orinoco low-level jet: an investigation of its mechanisms of formation using the WRF model. J Geophys Res Atmos 124(20):10696–10711

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Zhu Y (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–472

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) Ncep-doe amip-ii reanalysis (r-2). Bull Am Meteorol Soc 83(11):1631–1644

    Article  Google Scholar 

  • Kim D, Sobel AH, Del Genio AD et al (2012) The tropical subseasonal variability simulated in the NASA GISS general circulation model. J Clim 25(13):4641–4659

    Article  Google Scholar 

  • Krishnamurti TN (1961) On the role of the subtropical jet stream of winter in the atmospheric general circulation. J Meteorol 18(5):657–670

    Article  Google Scholar 

  • Li L, Lin P, Yu Y et al (2013) The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv Atmos Sci 30:543–560

    Article  Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44(17):2418–2436

    Article  Google Scholar 

  • Loaiza Cerón W, Andreoli RV, Kayano MT, Ferreira de Souza RA, Jones C, Carvalho LMV (2020) The influence of the atlantic multidecadal oscillation on the Choco low-level jet and precipitation in Colombia. Atmosphere 11:174

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34(6):L06805. https://doi.org/10.1029/2006GL028443

    Article  Google Scholar 

  • Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326(5957):1256–1260

    Article  Google Scholar 

  • Martinez JI, Rincón D, Yokiyama Y, Barrows T (2006) Foraminifera and coccolithophorid assemblage changes in the Panama Basin during the last deglaciation: response to sea-surface productivity induced by a transient climate change. Palaeogeogr Palaeoclimatol Palaeoecol 234:114–126

    Article  Google Scholar 

  • Martínez JI, Keigwin L, Barrows TT, Yokoyama Y, Southon J (2003) La Niña-like conditions in the eastern equatorial Pacific and a stronger Choco jet in the northern Andes during the Last Glaciation. Paleoceanography 18(2):1033. https://doi.org/10.1029/2002PA000877

    Article  Google Scholar 

  • Martinez R, Euscaategui C, Jaimes E, Leon G, Quintero A (2011) [Regional climates] Northern South America and the tropical Andes. [In State of the climate in 2010]. Bull Am Meteorol Soc 92(6):S186–S187

    Google Scholar 

  • Mapes BE, Warner TT, Xu M, Negri AJ (2003) Diurnal patterns of rainfall in northwestern South America. Part I: observations and context. Mon Weather Rev 131(5):799–812

    Article  Google Scholar 

  • Maddox RA (1980) Mesoscale convective complexes. Bull Am Meteor Soc 61(11):1374–1387

    Article  Google Scholar 

  • Martin ER, Schumacher C (2011) Modulation of caribbean precipitation by the Madden–Julian oscillation. J Clim 24:813–824

    Article  Google Scholar 

  • Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from Paleoclimate Archives. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen, SK, Boschung J, Nauels A, Xia Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Meisner BN, Arkin PA (1987) Spatial and annual variations in the diurnal cycle of large-scale tropical convective cloudiness and precipitation. Mon Weather Rev 115:2009–2032. https://doi.org/10.1175/1520-0493(1987)115%3c2009:SAAVIT%3e2.0.CO;2

    Article  Google Scholar 

  • Metcalfe SE, Jones MD, Davies SJ, Noren A, MacKenzie A (2010) Climate variability over the last two millennia in the North American Monsoon region, recorded in laminated lake sediments from Laguna de Juanacatlán, Mexico. The Holocene 20(8):1195–1206

    Article  Google Scholar 

  • Mitas CM, Clement A (2005) Has the Hadley cell been strengthening in recent decades? Geophys Res Lett 32(3). https://doi.org/10.1029/2004GL021765

  • Morales JS, Arias PA, Martínez JA, Durán-Quesada AM (2020) The role of low-level circulation on water vapor transport to Central and northern South America: insights from a 2D lagrangian approach. Int J Climatol. https://doi.org/10.1002/joc.6873,1-21

    Article  Google Scholar 

  • Munoz E, Busalacchi AJ, Nigam S, Ruiz-Barradas A (2008) Winter and summer structure of the Caribbean low-level jet. J Clim 21(6):1260–1276

    Article  Google Scholar 

  • Nieto-Ferreira R, Rickenbach TM, Wright EA (2011) The role of cold fronts in the onset of the monsoon season in the South Atlantic convergence zone. Q J R Meteorol Soc 137(657):908–922

    Article  Google Scholar 

  • Patarroyo G, Martinez JI (2015) Late quaternary sea bottom conditions in the southern Panama basin, Eastern Equatorial Pacific. J S Am Earth Sci 63:346–359

    Article  Google Scholar 

  • Pauluis O (2004) Boundary layer dynamics and cross-equatorial Hadley circulation. J Atmos Sci 61(10):1161–1173

    Article  Google Scholar 

  • Poveda G, Alvarez DM, Rueda OA (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36(11–12):2233–2249

    Article  Google Scholar 

  • Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour Res 50(1):98–118

    Article  Google Scholar 

  • Poveda G, Mesa OJ (1999) La corriente de chorro superficial del Oeste (“del Chocó”) y otras dos corrientes de chorro en Colombia: climatología y variabilidad durante las fases del ENSO Revista Académica Colombiana de Ciencia s23(89):517–528

  • Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on Earth): enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys Res Lett 27(11):1675–1678

    Article  Google Scholar 

  • Poveda G, Mesa OJ, Agudelo PA, Álvarez JF, Arias PA, Moreno HA, Salazar LF, Toro VG, Vieira SC (2002) Influencia del ENSO, Oscilación Madden-Julian, ondas del este, huracanes y fases de la luna en el ciclo diurno de la precipitación en los Andes tropicales de Colombia. Meteorolog Colomb 5:3–12

    Google Scholar 

  • Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234(1):3–27

    Article  Google Scholar 

  • Portig WH (1976) The climate of Central America. World Surv Climatol 12:405–478

    Google Scholar 

  • Qiao F, Song Z, Bao Y et al (2013) Development and evaluation of an Earth System Model with surface gravity waves. J Geophys Res Oceans 118(9):4514–4524

    Article  Google Scholar 

  • Ramanathan VLRD, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243(4887):57–63

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110(5):354–384

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109(1–2):33

    Article  Google Scholar 

  • Richter I, Xie S, Behera SK, Doi T, Masumoto Y (2014) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188. https://doi.org/10.1007/s00382-012-1624-5

    Article  Google Scholar 

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38(11):2379–2413

    Article  Google Scholar 

  • Rojas M, Arias PA, Flores-Aqueveque V, Seth A, Vuille M (2016) The South American monsoon variability over the last millennium in climate models. Clim Past 12:1681–1691

    Article  Google Scholar 

  • Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JJ, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404

    Article  Google Scholar 

  • Rueda OA, Poveda G (2006) Spatial and temporal variability of the Choco jet stream and its effect on the hydroclimatology of the Colombian Pacific (in spanish). Meteorolog Colomb 10:132–145

    Google Scholar 

  • Russell JM, Johnson TC (2007) Little ice age drought in equatorial Africa: intertropical convergence zone migrations and El Niño-Southern Oscillation variability. Geology 35(1):21–24

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Liu H (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1058

    Article  Google Scholar 

  • Sakamoto MS, Ambrizzi T, Poveda G (2011) Moisture sources and life cycle of convective systems over western Colombia. Adv Meteorol 2011:1–11. https://doi.org/10.1155/2011/890759

    Article  Google Scholar 

  • Sakamoto TT, Komuro Y, Nishimura T et al (2012) MIROC4h—a new high-resolution atmosphere-ocean coupled general circulation model. J Meteorol Soc Jpn 90(3):325–359

    Article  Google Scholar 

  • Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Otto-Bliesner BL (2012) Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1. 1). Geosci Model Dev 5:185–191

    Article  Google Scholar 

  • Schultz DM, Bracken WE, Bosart LF (1998) Planetary-and synoptic-scale signatures associated with Central American cold surges. Mon Weather Rev 126(1):5–27

    Article  Google Scholar 

  • Sierra JP, Arias PA, Vieira SC (2015) Precipitation over northern South America and its seasonal variability as simulated by the CMIP5 models. Adv Meteorol 2015:1–22. https://doi.org/10.1155/2015/634720

    Article  Google Scholar 

  • Sierra JP, Arias PA, Vieira SC, Agudelo J (2018) How well do CMIP5 models simulate the low-level jet in western Colombia? Clim Dyn 51(5–6):2247–2265

    Article  Google Scholar 

  • Singh MS, Kuang A, Tian Y (2017) Eddy influences on the strength of the Hadley circulation: dynamic and thermodynamic perspectives. J Atmos Sci 74:467–486. https://doi.org/10.1175/JAS-D-16-0238.1

    Article  Google Scholar 

  • Song Z, Qiao F, Song Y (2012) Response of the equatorial basin-wide SST to non-breakingsurface wave-induced mixing in a climate model: an amendment to tropical bias. J Geophys Res. https://doi.org/10.1029/2012JC007931

    Article  Google Scholar 

  • Stensrud DJ (1996) Importance of low-level jets to climate: a review. J Clim 9(8):1698–1711

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Tian B, Dong X (2020) The double-ITCZ Bias in CMIP3, CMIP5 and CMIP6 models based on annual mean precipitation. Geophys Res Lett 47: e2020GL087232. https://doi.org/10.1029/2020GL087232

  • Torrealba ER, Amador JA (2010) La corriente en chorro de bajo nivel sobre los Llanos Venezolanos de Sur América. Revista de Climatología 10:1–10

  • Torres-Pineda CE, Pabón-Caicedo JD (2017) Variabilidad intraestacional de la precipitación en Colombia y su relación con la Oscilación de Madden-Julian. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 41(79). https://doi.org/10.18257/raccefyn.380

  • Tjiputra JF, Roelandt C, Bentsen M et al (2013) Evaluation of the carbon cycle components in the Norwegian earth system model (NorESM). Geosci Model Dev 6(2):301–325

    Article  Google Scholar 

  • Vera C, Baez J, Douglas M, Emmanuel CB, Marengo J, Meitin J, Salio P (2006a) The South American low-level jet experiment. Bull Am Meteorol Soc 87(1):63–78

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Nogues-Paegle J (2006b) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000

    Article  Google Scholar 

  • Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya Atmos Ocean Phys 46(4):414–431

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Mélia DS et al (2013) The CNRMCM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121

    Article  Google Scholar 

  • von Salzen K et al (2013) The Canadian fourth generation atmospheric global climate model (CanAM4). Part I: representation of physical processes. Atmos Ocean 51:104–125

    Article  Google Scholar 

  • Wang C (2002) Atmospheric circulation cells associated with the El Niño-Southern oscillation. J Clim 15(4):399–419

    Article  Google Scholar 

  • Wang C (2007) Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn 29(4):411–422

    Article  Google Scholar 

  • Wang P (2009) Global monsoon in a geological perspective. Chinese Sci Bull 54(7):1113–1136

    Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335

    Article  Google Scholar 

  • Watt-Meyer O, Frierson DM (2019) ITCZ width controls on Hadley cell extent and eddy-driven jet position and their response to warming. J Clim 32(4):1151–1166

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai MU, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans 103(C7):14451–14510

    Article  Google Scholar 

  • Whitaker JW, Maloney ED (2018) Influence of the Madden–Julian oscillation and caribbean low-level jet on east Pacific easterly wave dynamics. J Atmos Sci 75(4):1121–1141

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, vol 100. Academic press, USA

    Google Scholar 

  • Wu HC, Felis T, Scholz D, Giry C, Kolling M, Jochum KP, Scheffers SR (2017) Changes to Yucatán Peninsula precipitation associated with salinity and temperature extremes of the Caribbean Sea during the Maya civilization collapse. Sci Rep 7(1):15825

    Article  Google Scholar 

  • Xin X, Wu T, Zhang J (2012) Introductions to the CMIP5 simulations conducted by the BCC climate system model. Adv Clim Change Res 8:378–382

    Google Scholar 

  • Xue Y, De Sales F, Li WP, Mechoso CR, Nobre CA, Juang HM (2006) Role of land surface processes in South American monsoon development. J Clim 19(5):741–762

    Article  Google Scholar 

  • Yepes J, Poveda G, Mejía JF, Moreno L, Rueda C (2019) CHOCO-JEX: a research experiment focused on the CHOCO low-level jet over the far eastern pacific and western Colombia. Bull Am Meteorol Soc 100:779–796

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Jpn Ser II 2 90:23–64

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2013) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn 40(5–6):1301–1318

    Article  Google Scholar 

  • Zhang ZS, Nisancioglu K, Bentsen M et al (2012) Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci Model Dev 5(2):523–533

    Article  Google Scholar 

  • Zhou T, Wu B, Wen X, Li L, Wang B (2008) A fast version of LASG/IAP climate system model and its 1000-year control integration. Adv Atmos Sci 25(4):655

    Article  Google Scholar 

  • Zuluaga MD, Poveda G (2004) Diagnostics of mesoscale convective systems over Colombia and the eastern tropical Pacific during. Adv Recurs Hydraul 11:145–160

    Google Scholar 

Download references

Funding

This research has been funded by “Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia” Program #5509-543-31966 and by MINCIENCIAS through the Grant 80740-490-220. J.P. Sierra was partially supported by the AMANECER (Amazon-Andes Connectivity) Project - Make Our Planet Great Again Program, funded by ANR and IRD (ref. ANR-18-MPGA-0008). A.M Durán-Quesada acknowledges support from the B8766 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola A. Arias.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

382_2020_5611_MOESM1_ESM.docx

Supplementary file1Fig. S1 Inconsistency between observational/reanalysis datasets (left) and CMIP5 mean absolute error (right) of the 925 hPa zonal wind for DJF (top) and SON (bottom).Fig S2. Monthly anomalies of the Choco jet intensity (black; left axis; in m/s) and its latitudinal location (red; right axis; in degrees of latitude) during the period 1979–2005, simulated by the 7 best CMIP5 models identified by Sierra et al. (2018).Fig. S3 Composites of SLP difference anomalies for (a) Niño-Land, (b) Ocean-Land, and (c) Niño-Ocean during events when the Choco jet is weak and exhibits a northward location (N-W; blue), and strong and exhibits a southward location (S-S; red). Composites are shown for ERA-Interim (ERA-In), ERA5, CFSR, NCEP-DOE, QuickSCAT, CMIP5 ensemble (All GCMs), PMIP3 ensemble (PMIP), and Best models ensemble (Best).Fig. S4 Histograms of anomalies of: (a) Choco jet core intensity, (b) Choco jet latitudinal location, and (c) Niño-Land SLP difference during LIA (blue), present (red) and future (yellow) periods for the CMIP5 models with data available for the Last Millennium, Historical and RCP8.5 experiments (Table 1). LIA corresponds to the period identified by Rojas et al. (2016) (Table 2). Present corresponds to the period 1979–2005. Future corresponds to the period 2070–2100. (docx 6212 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sierra, J.P., Arias, P.A., Durán-Quesada, A.M. et al. The Choco low‐level jet: past, present and future. Clim Dyn 56, 2667–2692 (2021). https://doi.org/10.1007/s00382-020-05611-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05611-w

Keywords

Navigation